Assignment 4 Solutions

1. A 97% confidence level is not given in Table 3, so we must use Table 2 to find the critical value z^* . We want to find the value z^* such that $P(-z^* < Z < z^*) = 0.97$. To use Table 2, we must find the total area to the left of z^* :

$$P(Z < z^*) = P(Z < -z^*) + P(-z^* < Z < z^*) = \frac{1 - 0.97}{2} + 0.97 = 0.9850 \Rightarrow z^* = 2.17$$

2. A 97% confidence interval for the true mean IQ of all adult Canadians is

$$\overline{x} \pm z^* \frac{\sigma}{\sqrt{n}} = 112 \pm 2.17 \left(\frac{15}{\sqrt{30}}\right) = 112 \pm 5.94 = (106.06, 117.94)$$

- 3. If we took repeated samples of 30 adult Canadians and calculated an interval in a similar manner, 97% of such intervals would contain the true mean IQ of all adult Canadians.
- 4-5. We are testing the hypotheses $H_0: \mu = 105$ vs. $H_a: \mu \neq 105$.

Since this is a two-sided test, and since the confidence level of the interval (97%) and the level of significance of the test (3%) add up to one, the confidence interval could be used to conduct the test. Since $\mu_0 = 105$ is not contained in the 97% confidence interval for μ , we reject H_0 at the 3% level of significance.

6. The null and alternative hypotheses must be stated in terms of parameters (like μ), not statistics (like \overline{x}). We're trying to find evidence that μ is greater than 110, so this statement goes into the alternative hypothesis. Then the null hypothesis is the same statement with an equal sign. The answer is:

$$H_0: \mu = 110$$
 vs. $H_a: \mu > 110$

7. We are told that IQs follow a normal distribution with standard deviation 15. This standard deviation is the population standard deviation σ . As such, we will conduct a z test. The test statistic is

$$z = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{112 - 110}{15/\sqrt{30}} = 0.73$$

- 8. The P-value is $P(Z > 0.73) = 1 P(Z \le 0.73) = 1 0.7673 = 0.2327$.
- 9. Since the P-value > $\alpha = 0.10$, we fail to reject H_0 .
- 10. At the 10% level of significance, we have insufficient evidence that the true mean IQ of adult Canadians is greater than 110.
- 11. If the true mean IQ of adult Canadians were 110, the probability of observing a sample mean at least as high as 112 would be 0.2327.

12. Since we don't know the value of the population standard deviation σ , we will conduct a t test.

We are testing the hypotheses $H_0: \mu = 110$ vs. $H_a: \mu \neq 110$.

The test statistic is

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} = \frac{108 - 110}{5/\sqrt{30}} = -2.19$$

The P-value is $2P(T(29) \leq -2.19) = 2P(T(29) \geq 2.19)$ by the symmetry of the t distributions. From Table 3, we see

$$P(T(29) \ge 2.150) = 0.02$$
 and $P(T(29) \ge 2.462) = 0.01$

Since 2.150 < 2.19 < 2.462, it follows that $P(T(29) \ge 2.19)$ is between 0.01 and 0.02. But our P-value is double this probability, so the P-value is between 2(0.01) and 2(0.02), i.e., between 0.02 and 0.04.

13. Since we don't know the value of the population standard deviation σ , we will use the t distribution for the critical value in our confidence interval.

The critical value t^* is the upper 0.025 critical value of the t distribution with n-1=29 degrees of freedom. That is, $t^*=2.045$.

14. We have reduced the margin of error by a factor of $\frac{5}{4} = 1.25$, so we require $(1.25)^2 = 1.5625$ times the original sample size. That is, we require a sample of size $100(1.5625) = 156.25 \approx 157$.