MATH 1300 ASSIGNMENT PROBLEMS (UNIT 3)

- [10] 1. Determine into which of the following 3 types (A), (B) or (C) the matrices (a) to (e) below can be classified.
 - Type (A): The matrix is in both reduced row-echelon form and row-echelon form.
 - Type (B): The matrix is in row-echelon form but not in reduced row-echelon form.
 - Type (C): The matrix is in neither reduced row-echelon form nor in row-echelon form.

	1	0	1	0		[1	1	0	0		[1	0	0	0		[1	2	0	3		0	0	0	0]	
(a)	0	0	1	0	(h)	0	0	1	1	(a)	0	0	1	0	(4)	0	0	1	4		0	0	0	0	
(a)	0	0	0	1	(0)	0	0	0	0	I	0	1	0	0		0	0	1 4 0 1	(e)	0	0	0	0		
	0	0	0	0		0	0	0	0		0	0	0	1		0	0	0	0_	0	0	0	0	0	

- (f) Find all 3×2 reduced row-echelon matrices. (Hint: there are 4 possible answers)
- [10] 2. Consider the following system of linear equations.

$$x_{1} + x_{3} + x_{4} = 5$$

$$x_{1} + x_{2} - x_{3} = 2$$

$$x_{2} + x_{3} + x_{4} = 3$$

$$x_{1} - x_{2} + x_{4} = 2$$

(a) Write out the augmented matrix for this system of linear equations.

(b) Use elementary row operations to reduce the augmented matrix to reduced row-echelon form.

- (c) Write out the solution to the system of linear equations.
- [10] 3. The augmented matrix from a system of linear equations has the following reduced rowechelon form.

1	3	0	5	0	4	0	2
0	0	1	2	0	2	0	3
0	0	0	0	1	3	0	4
0	0	0	0	0	0	1	5
0	0	0	0	0	0	0	2 3 4 5 0

- (a) How many equations are there in the system?
- (b) How many variables are there in the system?
- (c) How many of the variables are independent variables?
- (d) Write out the solution set for the system.
- [10] 4. Consider the system of linear equations

x+3y=52x+ay=b where *a* and *b* are real numbers.

- (a) Write out the augmented matrix for this system of linear equations.
- (b) Use elementary row operations to reduce the augmented matrix to row-echelon form.
- (c) Determine for what values of a and b does the system have infinitely many solutions.
- (d) Determine for what values of *a* and *b* does the system have no solution.
- (e) Determine for what values of *a* and *b* does the system have an unique solution.
- [10] 5. Michael, John and Matthew went to their local grocery store. Michael bought two kilograms of almonds and one kilograms of peanuts and paid \$20.00. John bought one kilogram of almonds and two kilograms of cashews and paid \$24.00. Matthew bought three kilograms of peanuts and one kilogram of cashews and paid \$25.20.

(a) Let x = price of a kilogram of almonds, y = price of a kilogram of peanuts and z = price of a kilogram of cashews. Write out 3 linear equations representing the purchases made by Michael, John and Matthew.

(b) Write out the augmented matrix for your system of 3 linear equations of part (a).

(c) Use elementary row operations to row reduce the augmented matrix of part (b) to a reduced row-echelon matrix.

(d) What is the price per kilogram for each of these items?

[10] 6. Consider the linear equation ax+by+cz = d $(d \neq 0)$ (1) and the associated homogeneous equation ax+by+cz = 0 (2).

Let (x_0, y_0, z_0) and (x_1, y_1, z_1) be two solutions to equation (1) and let (x_2, y_2, z_2) be a solution to equation (2).

- (a) Show that $(x_0 x_1, y_0 y_1, z_0 z_1)$ is a solution to equation (2).
- (b) Show that $(x_0 + x_2, y_0 + y_2, z_0 + z_2)$ is a solution to equation (1).
- (c) Let k be any real number. Show that (kx_2, ky_2, kz_2) is a solution to equation (2).