This assignment consists of FOUR pages. Show your solutions.

1. Let A, B and C be the following matrices:

A =	[1	2	3]		р [1	2]	a	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1	2	
	3	2	1,	1	$B = _{2}$	4,	C =	4	0	4	•
					ြ၁			2	1	0	

Compute the following matrices or state why the matrix is not defined. (a) $A^T A + C$

(b) $CA^T + BA$

(c) $\frac{1}{4}C(BA)^T$

(d) $2B^{-1}A + AC$

Math 1300 Section D01

2. Consider the following matrix,

$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}.$$

(a) Compute M^{-1} by augmenting M with a 3×3 identity matrix and using row reduction.

(b) Write M and M^{-1} as the product of elementary matrices.

(c) Calculate det(M) by cofactor expansion.

(d) Calculate det(M) by using row reduction to a triangular matrix (see unit 3.4).

Math 1300 Section D01

3. Consider the following system of equations.

$$\begin{aligned} x + 2y &= a \\ a^2x + 2y &= 1 \end{aligned}$$

(a) How many solutions does this system have if a = -1?

(b) How many solutions does this system have if a = 1?

(c) How many solutions does this system have if $a \neq 1$ and $a \neq -1$?