MATH 1700: Assignment 2

DUE: 11:59 PM (CENTRAL TIME = TIME IN WINNIPEG), MONDAY, 27 FEBRUARY 2017

(Late assignments will not be accepted)

Your paper with solutions has to be submitted as <u>one</u> PDF file with all pages clearly readable and placed in the file in the correct order. (Your paper may not be read/marked if this condition is not met.)

All your answers have to be justified. Unjustified answers will receive little or no credit.

Note: this assignment covers sections 5.3, 5.4, 5.5, 6.1, 10.2 (partial), 10.4, 6.2, 6.3.

1. Use the Fundamental Theorem of Calculus to find derivatives of the following functions:

(a) (5 points)
$$f(x) = \int_{\tan x}^{3} \frac{2^{u}}{u^{2}} du$$

(b) (5 points) $g(x) = \int_{1+\sin x}^{x^{4}} \frac{\tan u}{u} du$

2. Evaluate the following definite integrals:

(a) (5 points)
$$\int_{0}^{\pi/4} \sqrt{\tan x} (\sec x)^4 dx$$

(b) (5 points) $\int_{1}^{\sqrt{e}} \frac{\sin(\pi \ln x)}{2x} dx$

3. Find the following indefinite integrals:

(a) (5 points)
$$\int \frac{x^2}{\sqrt{1-x}} dx$$

(b) (5 points)
$$\int \cos x \cdot \sin^3(\sin x) dx$$

- 4. Find the areas of the following regions:
 - (a) (5 points) Region between $x = y^2 2y$ and $x = 6y y^2$.
 - (b) (5 points) Closed loop of the curve $y^2 = x^4(1-x)$ that lies to the right of the origin.
- 5. Suppose that the solid of revolution is obtained by rotating the region bounded by $y = x^2 2x$ and $y = 2x x^2$ about the line y = 2.
 - (a) (3 points) Use the disc or washer method to set up an integral for the volume of this solid.
 - (b) (2 points) Find this volume.

(Note: no credit will be given if you do not use the disc or washer method.)

- 6. Suppose that the solid of revolution is obtained by rotating the region bounded by $x = y^2$, $y = \sqrt{2-x}$ and y = 0 about the line y = 1.
 - (a) (3 points) Use the cylindrical shell method to set up an integral for the volume of this solid.
 - (b) (2 points) Find this volume.

(Note: no credit will be given if you do not use the cylindrical shell method.)

- 7. Suppose that the solid of revolution is obtained by rotating the region bounded by $y = x^2$, $y = -x^2$ and x = -1 about the line x = -2.
 - (a) (3 points) Set up an integral for the volume of this solid (you can use any method).
 - (b) (2 points) Find this volume.
- 8. (5 points) Sketch and find the area of the region bounded by the parametric curve $x = t^3 4t$, $y = t^2$ ($0 \le t \le 2$) and the y-axis.
- 9. (5 points) Sketch and find the area of the region inside both polar curves r = 1 and $r = 2\cos\theta$.
- 10. (5 points) Sketch and find the area of the region inside $r = |1 2\cos\theta|$.

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	10	10	10	10	5	5	5	5	5	5	70
Score:											