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While studying this book, why not hear Grant explain it to you?
Contact Grant for info about purchasing Grant’s Audio Lectures. Some concepts
make better sense when you hear them explained.

Better still, see Grant explain the key concepts in person. Sign up for
Grant’'s Weekly Tutoring or attend Grant’s Exam Prep Seminars. Text or
Grant (204) 489-2884 or go to www.grantstutoring.com to find out more about
all of Grant’s services. Seminar Dates will be finalized no later than Sep. 25
for first term and Jan. 25 for second term.

HOW TO USE THIS BOOK
I have broken the course up into lessons. Study each lesson until you can do all of my
lecture problems from start to finish without any help. Then do the Practise Problems for that
lesson. If you are able to solve all the Practise Problems I have given you, then you should have

nothing to fear about your Midterm or Final Exam.

I have presented the course in what I consider to be the most logical order. Although my
books are designed to follow the course syllabus, it is possible your prof will teach the course in
a different order or omit a topic. It is also possible he/she will introduce a topic I do not cover.
Make sure you are attending your class regularly! Stay current with the
material, and be aware of what topics are on your exam. Never forget, it is your
prof that decides what will be on the exam, so pay attention.

If you have any questions or difficulties while studying this book, or if you believe you
have found a mistake, do not hesitate to contact me. My phone number and website are noted
at the bottom of every page in this book. “Grant’s Tutoring” is also in the phone book.
I welcome your input and questions.

Wishing you much success,
Gnant Shene

Owner of Grant’s Tutoring
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Have you signed up for

Grant’'s Homework Help yet?
No? Then what are you waiting for? IT’S FREE!

Go to www.grantstutoring.com right now,

and click the link to sign up for

Grant’'s Homework Help

IT'S FREE!

e Grant will send you extra study tips and questions of interest
throughout the term.

e You are also welcome to contact Grant with any questions you
have. Your question may even provide the inspiration for other
tips to send.

e If there are any changes in the course work or corrections to this
book, you will be the first to know.

e You will also be alerted to upcoming exam prep seminars and
other learning aids Grant offers.

e If you sign up, you will also receive a coupon towards Grant’s

services.

And, it is all FREE!
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Four ways Grant can help you:
. Grant’s Study Books

= Basic Statistics 1 (Stat 1000)

= Basic Statistics 2 (Stat 2000)

= Linear Algebra and Vector Geometry (Math 1300)
= Matrices for Management (Math 1310)

= Intro Calculus (Math 1500 or Math 1510)

= Calculus for Management (Math 1520)

= Calculus 2 (Math 1700 or 1710)

All these books are available at UMSU Digital Copy Centre, room 118
University Centre, University of Manitoba. Grant’'s books can be
purchased there all year round. You can also order a book from
Grant directly. Please allow one business day because the books are
made-to-order.

. Grant’s One-Day Exam Prep Seminars

These are one-day, 12-hour marathons designed to explain and review all
the key concepts in preparation for an upcoming midterm or final exam.
Don’t delay! Go to www.grantstutoring.com right now to see the date of the
next seminar. A seminar is generally held one or two weeks before the
exam, but don't risk missing it just because you didn’t check the date well in
advance. You can also reserve your place at the seminar online. You are
not obligated to attend if you reserve a place. You only pay for the seminar
if and when you arrive.

. Grant’s Weekly Tutoring Groups
This is for the student who wants extra motivation and help keeping on top
of things throughout the course. Again, go to www.grantstutoring.com for
more details on when the groups are and how they work.

. Grant’s Audio Lectures

For less than the cost of 2 hours of one-on-one tutoring, you can listen to
over 40 hours of Grant teaching this book. Hear Grant work through
examples, and offer that extra bit of explanation beyond the written word.
Go to www.grantstutoring.com for more details.
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(Matrices for Management) LESSON 1: SYSTEMS of LINEAR EQUATIONS 1

LESSON 1: SYSTEMS oF LINEAR EQUATIONS

Warning: The following lesson is intended as a review of and introduction to basic
concepts of linear systems. I think you will find this lesson helpful to give you context for this
course, but it is quite possible you will never be tested on the material and methods taught here. It
will, however, give you the necessary background to understand and appreciate the later lessons.

A linear equation has one or more variables (like x or y) raised to the

power of 1. For example, 2x+3y =6 is a linear equation; both x and y have understood
powers of 1. An equation is nonlinear if it has any variables raised to other powers (like x* or

y*); if the variables are under roots (like Jx or Ef)_/ ); if the variables are in denominators

(like é) ; if the variables are part of a transcendental function (examples of transcendental
x

functions are trigonometric functions like sinx; exponential functions like e* or 27;
logarithmic functions like Inx or logx). A term that contains more than one variable
is nonlinear (6xy is a nonlinear term because it has two variables multiplying together even
though both of those variable are raised to the understood power of 1). The coefficients
(the numbers in front of the variables) can come in all shapes and sizes,
however. There is also no limit on the amount of variables in a linear equation,
so long as the variables are strictly and only raised to the power of 1.
Here are some examples:

o 2x+3y+4z=7 is a linear equation. Although, there are three variables (x, y, 2),

they are all raised to the power of 1, and so are linear.

e Bx+ % y =12 is a linear equation. Even though it has weird coefficients like “J3”7

) [P 2]

and “% ’, its variables are raised to the power of 1 (“x” and “y”) making it linear.

e 3x —4\/; =7 is a nonlinear equation because of the “\/; ” term.

e 3x—4xy+5y =10 is a nonlinear equation because of the “xy” term.

e 4x*>-5x+4y=8 is a nonlinear equation because of the “x*” term.

e O6sinx+3cosy—log,x =10 is a nonlinear equation. You've got to be kidding me!

It’s not even close; it has trigonometric and logarithmic functions in it.

© Grant Skene for Grant’s Tutoring (Www.grantstutoring.com) DO NOT RECOPY



2 LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

GRAPHING A LINEAR EQUATION

The fundamental linear equation has two variables (we usually designate them by x and
y, but any symbols could be used). Linear equations are so-called because they graph

as a line. The standard form of a linear equation is ax+ by =c¢ where a, b and c are any
real number constants. For example, 2x+ 3y =6 is a linear equation in standard form.

To quickly graph a line, we need only plot two points. The easiest points to plot are the
intercepts. To get the y-intercept, sub in x = 0. To get the x-intercept, sub in

y = 0. If I wanted to graph 2x + 3y =6, [ would make a table-of-values like so:

X Y
0 sub x = 0 into 2x+3y =6 to solve y
suby = 0 into 2x+3y =6 to solve x 0

Therefore, the table of values for 2x + 3y =6 would be:

w o=
o NI

We could now plot these two points and draw a line through them to make our graph.

If you have two or more equations, you have a system of equations. The goal is to
then find the solution or solutions that satisfy all the equations. Geometrically speaking
(i.e. if we were looking at a graph of the system), we are trying to find the intersection

of the graphs; the point or points where the separate graphs contact each other.

© Grant Skene for Grant’s Tutoring (text or call (204) 489-2884) DO NOT RECOPY



(Matrices for Management) LESSON 1: SYSTEMS of LINEAR EQUATIONS 3

LINEAR SYSTEMS WITH TWO VARIABLES

Let’s first focus on the most straightforward system of equations: two linear equations
with two variables. Geometrically speaking, we have two lines and want to find where they

intersect. There are three possibilities:

The two lines have a The two lines are The two lines are right
single point of parallel; they do not on top of each other;
intersection. intersect at all. they have infinite

points of intersection.

1. Solve the system of equations below using the elimination method, and
interpret the solution geometrically.

2x+3y =6
S5x+2y=-7

SOLUTION

In the elimination method we add the columns in such a way that one of
the variables is eliminated.” Essentially, the terms to be eliminated must have
identical coefficients, but with the opposite sign. We can multiply an equation by any
number we want to accomplish this (just make sure you multiply both sides of the equation to
maintain balance).

For no particular reason, I will eliminate the “y” terms (I could just as easily eliminate
the “x” terms). I will multiply every term in the first equation by —2 to create a “—6y” term and
multiply every term in the second equation by 3 to create a “+6y” term.

2x+3y=6 — multiplyby -2 — —4x—§f:—12
5x+2y=-7 — multiplyby3 — 15x+§/f =-21
Add the columns — 11x =-33

" Some people prefer to subtract the columns to eliminate a variable. I strongly advise against this as many
students often carelessly losing track of negative signs while performing the math.
© Grant Skene for Grant’s Tutoring (Www.grantstutoring.com) DO NOT RECOPY




LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

Now that we have solved x, we can substitute this value back into either one of the
original equations to solve y. I will sub it into the first equation, but I could just as easily use

the second one (either equation better produce the same value for y, or we have definitely

made a mistake).
Subx = —3 into 2x+3y =6:

2(-3)+3y=6 > —6+3y=6 > 3y=12 > y

We have established the solution to this system is x = —3, ¥ = 4. Put another way, we

have found both lines intersect at the point (-3, 4).
We can check our answer by confirming (—3, 4) satisfies both equations.

Subbing (-3, 4) into 2x+3y =6, we get 2(-3)+3(4)=6 — —6+12=6 — 6=6V
Subbing (-3, 4) into Sx+2y =-7, we get 5(—3)+2(4)=—7 — —-1548=-7 > -7=-7V

Thus, both lines pass through the point (-3, 4).

The solution to this system of equations is x =—3, y = 4. Interpreting
this solution geometrically, we have discovered a graph of these two lines

intersects at the point (-3, 4).

Although the question does not ask us to display the graphs, let’s do so just to visualize
what we mean by interpreting the solution geometrically. As our check confirmed, the two

lines cross at the point (—3, 4) verifying that is the one and only solution to this system of

linear equations.

DO NOT RECOPY
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(Matrices for Management) LESSON 1: SYSTEMS of LINEAR EQUATIONS

2. Solve the system of equations below using the elimination method, and
interpret the solution geometrically.

X
Zry=1
2ty
x_5y
6 3

SOLUTION
If they are nasty enough to put fractions in an equation, get rid of them! (The fractions,

not the people who put them there.) Multiply the equation by the common denominator. The
first equation has a denominator of 4, so I will multiply every term by 4 to get rid of it. The

second equation has denominators of 6 and 3, so the common denominator is 6. I will multiply
every term by 6 to get rid of them.

£erzl — multiply by 4 — % + 4y = 4 — x+4y=4

4

7
£—5—y:3 — multiply by 6 — i;_ g;5y=6><3 — x-10y =18

6 3

x+4y =4
Thus, the given system of equations is equivalent to the system: Y
x—-10y =18
x+ 4y =4 — leaveitalone — X+ 4y = 4
x—-10y =18 — multiplyby -1 —» - X +10y=-18
Add the columns — 14y =-14
_-14
y 14
Sub y = —1 into either one of the two equations to get x. I will use x+4y =4:

x+4(-1)=4 > x-4=4 > x=8
Sub (8, —1) into both of the original equations to check the answer:
§+y:1 — subin (8,-1) — %+(—1)=1 > 2-1=1 - 1=1v

X_2Y_3 — subin (8,-1) — %——:3 - g+—=3 - §=3‘/

6 3

The solution to this system of equationsisx =8,y = —1.
These two lines intersect at the point (8, —1).

© Grant Skene for Grant’s Tutoring (Www.grantstutoring.com) DO NOT RECOPY



6 LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

3. Solve the system of equations below using the elimination method, and
interpret the solution geometrically.
3x+4y =5
{Sx —2y =12

SOLUTION
3x+4y=5 — leaveitalone — 3x+jl/y/: 5
5x-2y=12 — multiplyby2 — 10x- 45 =24
Add the columns — 13x =29

Tip: Rather than go through the ordeal of fraction math to solve

y by substitution, go back to the original system and eliminate x this

time.

3x+4y=5 — multiplyby5 — 15%+20y= 25
5x-2y =12 — multiplyby -3 — -15x + 6y =-36

Add the columns — 26y =-11
11

26

Check (29/13, —11/26) is the correct solution.”
Subbing (29/13, —11/26) into 3x+4y =5, we get :

22
3(§J+4(—EJ:5 N A 5 » 57 22 g % _5v

P A—— [ = - — =
13 26 13 326 13 13 13

Subbing (29/13, —11/26) into 5Sx -2y =12, we get :

11
5 22 -2 ! =12 - &+—2é:12 - ﬁ+£:12 - E:12\/
13 26 13 1326 13 13 13

The solution to this system of equations is x = 29/13,y = —11/26.
These two lines intersect at the point (29/13, —11/26).

" Never check your solutions to exam questions until you have completed the entire exam. Don’t waste time
checking answers when you have other questions to do. If you're right, you just wasted precious time
proving it; if you are wrong, you don’t want to know! Get the test finished first, then check if time allows.

© Grant Skene for Grant’s Tutoring (text or call (204) 489-2884) DO NOT RECOPY




(Matrices for Management) LESSON 1: SYSTEMS of LINEAR EQUATIONS 7

4. Solve the system of equations below using the elimination method, and
interpret the solution geometrically.

2x+3y =6
4x+6y =6

SOLUTION

2x+3y=6 — multiplyby -2 — —%—%:—12
4x+6y=6 — leaveitalone — M+%: 6

Add the columns — 0=-67

Whoa! What happened here? Both variables got eliminated at the same time! That
left us with just “0” on the left hand side of the equation after we added the columns.

Specifically, we got “O = —6”. This is clearly a false statement; 0 and —6 are not equal at all!

If, when performing the elimination method on a system of two

linear equations with two variables, you end up eliminating both

variables at the same time, there are two possibilities:

¢ You end up with a false equation “0 = k” where k is a nonzero

number. The false statement tells us there is no solution to

the system; the lines must be parallel.

e You end up with the true equation “0 = 0”. This true

statement tells us there are infinite solutions to the system;

the lines must be right on top of each other; any point on the

first line will also be on the second line.

There is no solution to this system of equations since 0 # -6.
Interpreting this solution geometrically, we have discovered the two lines
are parallel and, therefore, do not intersect.

Although the question does not ask us to display the graphs, let’s do so. As we can see

on the next page, the two lines are indeed parallel.

© Grant Skene for Grant’s Tutoring (Www.grantstutoring.com) DO NOT RECOPY




8 LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

Table of Values y Table of Values
4x+6y =6 2x+3y =6
x |y XY
0 (1 02

3/2 (0 310

5. Solve the system of equations below using the elimination method, and
interpret the solution geometrically.
x-4y=4
{—Zx +8y=-8

SOLUTION

x—-4y=4 — multiplyby 2 — %—%z 8
—2x+8y=-8 —> leaveitalone —» 2% +§/f =-8
Add the columns — 0 =0

Since the elimination has resulted in “0 = 07, we discover this system has infinite
solutions. In fact, we have discovered these two equations are actually multiples of each other

and, therefore, really the same line.

Table of Values y Table of Values
x—4y=4 | -2x+8y =-8
x|y — X| Y
0| -1 — 0| -1
41 0 — 41 0
_

T T 1 [T [
:/:—4y =4
/ and

— -2x+8y=-8

Just because there are infinite solutions does not mean everything is a solution.
Infinite does not mean everything. For example, as we can see on the graph of this

system above, (0, 0) is not a solution to this system since it is not on the lines. Only points on

© Grant Skene for Grant’s Tutoring (text or call (204) 489-2884) DO NOT RECOPY




(Matrices for Management) LESSON 1: SYSTEMS of LINEAR EQUATIONS 9

the lines are solutions to this system. Admittedly, there are infinite points on the lines, but that
is nothing compared to the amount of points not on the lines.

When there are infinite solutions, we must tell people what all the solutions are. They
have to be clear which points are solutions and which are not. One way is to pick whichever of
the two equations you like (since they are describing the same line anyway), and tell them the
solutions are all the points on that line. So, I could say, the solution to this system is the
infinite number of points on the line x -4y =4. But that’s not good enough. Especially by the
time we get to Lesson 2 and encounter larger, more complicated systems of linear equations, we
need a more thorough way of describing the infinite solutions.

We introduce a parameter and state all the variables in terms of it. A
parameter is a free variable, free to be any real number. The most common letter
we use to represent a parameter is t; another commonly used symbol is s, but you could really
use any letter you want. This problem has two variables, x and y. We can pick whichever one
we want and simply let it equal t. I will let y = t, which is to say, y can be any real number; y
has infinite values. (I could just as easily let x = t.) We know all the solutions satisfy the
equation x -4y =4.

Suby = tinto x -4y =4 and solve forx: x—-4t=4 — x=4+4t

We now have a “recipe” for all the solutions to the system: x = 4 + 4t, y = t. Any real
number we choose for t will produce a solution to the system. For example, if we let t = 0, we

getx =4,y =0. Ifwelett =3, we get x = 16, y = 3. There are infinite choices for t (we

could lett = -7, t = 1/3, t = J5 , any real number we can think of), producing infinite

solutions to this system.

There are infinite solutions to this system of equations since 0 = O.
The solutions are x = 4 + 4t, y = t where t is any real number.
Interpreting this solution geometrically, we have discovered the two lines
are, in fact, the same line. All points in the form (4 + 4t, t) are solutions
to this system.

" If you let x = s instead (I could have used t again, but I don’t want this answer to be confused with the answer
above), and sub that into x—4y =4, we get s—4y=4 — —4y=4-s —>y=4—_45=i4+_—i - y=—1—%

Thus,x =s, y =-1 —% or (s, -1 —%j is an equivalent answer (it generates all the same points).

© Grant Skene for Grant’s Tutoring (Www.grantstutoring.com) DO NOT RECOPY



10 LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

LINEAR SYSTEMS WITH THREE VARIABLES

If you have a linear equation with three variables, ax+by +cz =d, you actually have a
plane rather than a line. For example, x+2y+3z =06 is a plane in standard form. A plane is

a flat, two-dimensional surface; i.e. it has length and width. A table-top is a plane; the floor is a
plane; the walls are planes; the slanted roof on the outside of a typical home is a plane. The
equation of a plane is still considered a linear equation because all its variables are raised to the
power of 1.

We are now dealing with three-dimensional coordinate geometry. Assuming you are in a
nice ordinary rectangular room right now, take a look at a corner on the floor. Visualize the x-
axis and y-axis starting at that corner and running along the edges of the floor. Say the x-axis
runs along the north-south edge of the floor, and the y-axis runs along the east-west edge of the
floor (you don’t need a compass; decide for yourself what is north, west, east, and south).
Now, in that same corner where the x-axis and y-axis started, the vertical line running up from
the floor to the ceiling is the z-axis; i.e. the z-axis is that seam where the “north” wall and the
“west” wall meet.

Essentially, up to now, we have been restricted to drawing graphs on the floor, the xy-
plane. With the addition of the z-variable, we can now rise up off the floor into the third
dimension. Don’t worry! This is not a course about trying to draw three-
dimensional graphs. But, it might help to try to visualize what we are dealing with here.

Just as we do for lines, we can graph a plane by plotting the intercepts. Since we are
dealing with three variables, x, y, z, set two of them equal to 0 and sub in to the plane equation
to compute the remaining variable’s intercept.

The table of values for x +2y +3z =6 would be:

OO O|x
o wol=
S O N W

We could now plot these three points and connect the dots to form a triangle. That

triangle becomes the base we can rest the entire plane on. Again, look at that corner of the

" By the way, a linear equation with 4 variables or more is called a hyperplane. This is impossible for the
ordinary person to visualize since we are dealing with four dimensions or more in space.
© Grant Skene for Grant’s Tutoring (text or call (204) 489-2884) DO NOT RECOPY




(Matrices for Management) LESSON 1: SYSTEMS of LINEAR EQUATIONS 11

floor where you are visualizing the three axes. The point (6, 0, 0) in our table above tells us to
go 6 units along the x-axis and plot a point there (let’s say we go 6 inches along our north-south
edge); (0, 3, 0) tells us to plot a point 3 units along the y-axis (3 inches along our east-west
line); (0, 0, 2) plots a point 2 units up the z-axis (2 inches up the seam where the “north” and
“west” walls meet. If you want, pull out a tape measure and actually try marking those points
on the floor and walls (if you don’t have a life, I mean). If you were to connect those three dots
with some string, you have formed the triangular base that supports the plane. Note, the plane
would be making an angle with the floor and walls; it is not parallel to any of them.

Below is how we would attempt to depict this on paper. Note that we only draw the
triangle connecting the three intercepts, but it is understood the plane is extending infinitely in
all directions from this triangular base it rests upon. Understand we are trying to show three
dimensions on two-dimensional paper, so always try to hold on to the image of the walls and

floor to properly see this.

1 x+2y+3z=6

Let me stress, this is not a course about drawing graphs in three-
dimensional space. I am merely doing this as an exercise, so that

you might grasp visually what we are dealing with. It is unlikely you

will have to draw a graph like this on your exam (it has happened

once or twice though, so never say never).

© Grant Skene for Grant’s Tutoring (Www.grantstutoring.com) DO NOT RECOPY



12 LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

6. Solve the system of equations below using the elimination method, and
interpret the solution geometrically.
x+2y+32=6
2x+3y+52=9
5x+2y-2=-2

SOLUTION

There is a two-stage process to the elimination method when three
equations are involved. It helps to keep track of things if we number the
original equations (1), (2) and (3).

Stage 1: Select a pair of equations and eliminate whichever variable
strikes your fancy to create an equation that has only two
variables. Number that new equation (4). Then, select a second
pair of equations and eliminate the same variable. This is a
must! If you eliminated x in the first pair, you must eliminate x
in the second pair. Number that new equation (5).

Stage 2: Now equations (4) and (5) form a system of equations with two
variables. Solve that system by elimination. Once you have
solved those two variables, you can sub them into any one of (1),
(2) or (3) to solve the remaining variable.

Number the original equations:

(1) x+2y+3z=6

(2) 2x+3y+5z=9
(3) Sx+2y-z=-2

«“”

I like that “—2” term in equation (3), so I will exploit it to eliminate the “z” terms in my
pairs. (Another good choice would be to exploit the “x” term in equation (1) to eliminate the
“x” terms in the pairs.)

My first pair will be equations (1) and (3):

(1) x+2y+3z2=6 — leaveitalone — X+2y+3%5= 6
(3) 5x+2y—-z=-2 — multiplyby3 —»> 15x+6y— 3% =-6

Add the columns — 16x+8y =0
Equation (4) 16x+8y =0
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My second pair will be equations (2) and (3):

(2) 2x+3y+52=9 — leaveitalone —» 2x +3y+5¢= 9
(3) 5x+2y-z=-2 — multiplyby5 — 25x+10y-5¢ =-10
Add the columns —» 27x+13y = -1

Equation (5) 27x+13y =-1

Equations (4) and (5) now form a system of two equations with two

variables:

(4) 16x +8y= 0
(5) 27x+13y=-1

Here’s a good idea: Divide equation (4) by 8 to make the coefficients smaller and easier
to work with. (Note: 0 +8 = 0.)

(4) 16x +8y= 0 — divideby8 - 2x + y= 0
(5) 27x+13y=-1 — leaveitalone —» 27x+13y=-1

Now I will eliminate y from this system:

2x + y= 0 — multiply by =13 > —26x—%= 0
27x+13y=-1 — leaveitalone — 27x+%:—1

Add the columns — X =-1

Subx = —1into 2x+ y =0:
2(-1)+y=0 » —2+y=0 > y=2

We have established so farx = —1, y = 2. Sub these into any one of the original three

equations to solve z. I will use equation (3) Sx+2y —z=-2:
5(-1)+2(2)-2=-2 - -5+4-2=-2 > -1-2=-2 > —z=-1 > z=1

Thus,x = =1,y = 2, 2 = 1 or (-1, 2, 1) is the solution to this system. By the way,
don’t get confused and say this system has three solutions; this system has one solution. That
one solution contains values for all three variables.

If time allows, we can check our answer by confirming (—1, 2, 1) satisfies all three of the
original equations in the system. If the check fails in any single one of the equations, we have

made a mistake.

© Grant Skene for Grant’s Tutoring (Www.grantstutoring.com) DO NOT RECOPY



14 LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

Subbing (-1, 2, 1) into equation (1) x+2y+3z=6, we get:
-1+2(2)+3(1)=6 - -1+4+3=6 —»> 6=6V
Subbing (-1, 2, 1) into equation (2) 2x+3y+5z2=9, we get:
2(-1)+3(2)+5(1)=9 > -2+6+5=9 —» 9=9V
Subbing (-1, 2, 1) into equation (3) 5x+2y—z=-2, we get:
5(-1)+2(2)-1=-2 - -5+4-1=-2 > -2=-2V

Thus, all three planes pass through the point (-1, 2, 1).

The solution to this system of equations is x =—-1, ¥y = 2, 2 = 1.
Interpreting this solution geometrically, we have discovered a graph of
these three planes intersects at the point (-1, 2, 1).

Don’t even think about trying to draw a graph of these three planes to visualize them
intersecting at this one point. It isn’t worth the effort, and your picture is probably going to
look like somebody spilled the uncooked spaghetti.

Here is a way to get a grasp of this visually. Look at the “north” wall of your room.
That’s sort of like plane (1). Now look at the “west” wall of your room. That’s sort of like plane
(2). Note these two planes intersect along the infinite number of points on the line running up
the seam where the two walls meet (that seam in the “northwest” corner running from the floor
up to the ceiling). Admittedly, these two walls make a right angle with each other, while the
two planes in our system may make some other angle, but who cares? Visualize swinging the
two walls using that “northwest” seam as a hinge, like swinging the covers of a textbook. The
planes can make any angle you want, but they still intersect along that line running up the
seam. Finally, look at the floor. That’s sort of like plane (3). Note the floor shares a seam with
the “north” wall (infinite points along their line of intersection). The floor also shares a seam
with the “west” wall (infinite points along their line of intersection). But, there is only one
point where the floor meets both the “north” and “west” walls, and that is that point in the
corner of the floor at the “northwest” seam. The three planes have a single point of
intersection, just as our three planes meet at the point (-1, 2, 1). (-1, 2, 1) is sort of like

that corner where the floor meets both the north wall and the south wall.
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7. Solve the system of equations below using the elimination method, and

interpret the solution geometrically.
2x-y-42=0
x+2y+3z=1
2x+y+52=2

SOLUTION

Number the original equations:

(1) 2x-y-42z=0
(2) x+2y+3z=1
(B) 2x+y+5z=2

I like that “~y” term in equation (1), so I will exploit it to eliminate the

@y

y” terms in my

pairs. (Another good choice would be to exploit the “x” term in equation (2) to eliminate the

“x” terms in the pairs.)
My first pair will be equations (1) and (2):

1) 2x-y-4z=0 — multiplyby2 — 4x—/2/f—8z:0
(2) x+2y+3z=1 — leaveitalone —» x+%+32=1

Add the columns — 5x —-52=1
Equation (4) 5x-5z=1

My second pair will be equations (1) and (3):

(1) 2x—-y—-4z=0 — leaveitalone — 2x—/—4z=0

(8) 2x+y+5z=2 — leaveitalone — 2x+/+52:2

Add the columns — 4x +z2=2
Equation (5) 4x+z=2

We now have a system of two equations with two variables:

(4) 5x-5z=1
(5) 4x+z=2

I will eliminate 2 from this system:

(4) 5x-5z=1 — leaveitalone — SX—% =1
(5) 4x+z=2 — multiplyby5 — 20x+5% =10
Add the columns — 25x =11

11

" 25
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16 LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

Since x = 11/25 is too annoying to sub into one of equations (4) or (5) to

solve 3z, I will perform elimination again; this time eliminating x:

(4) 5x-5z=1 — multiplyby -4 — -20x +20z=-4
(5) 4x+2=2 — multiplyby5 —» 20x +52=10
Add the columns — 25z= 6

_9

25

We have established so far x = 11/25, 2 = 6/25. Sub these into any one of the
original three equations to solve y. I will use equation (1) 2x -y —4z=0:

11 6 22 24 2 2 2
2l = |-y-4]=|=0 » Z2-y-Z2-0 5 —y—-"=0 > —y=— > y=—-—
(25) Y (25] 25 ¥ 25 Y755 T AT

Thus, x = 11/25, y = -2/25, 2 = 6/25 or (11/25, -2/25, 6/25) is the solution to
this system.

If time allows, we can check our answer by confirming (11/25, -2/25, 6/25) satisfies all
three of the original equations in the system. If the check fails in any single one of the

equations, we have made a mistake. I will leave you to perform the check yourself.

The solution to this system of equations is x=£, _ = 6

y » B=_—-
25 25 25
Interpreting this solution geometrically, we have discovered a graph of

these three planes intersects at the point [E 20 j

25" 25’ 25
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8. Solve the system of equations below using the elimination method, and
interpret the solution geometrically.

2x-y+32=3
-3x+2y-2=8

SOLUTION
Wait a minute! There are only two equations here! All we can do then is eliminate one
of the variables. I like that “~y” term in equation (1), so I will exploit it to eliminate the “y”
terms. (Another good choice would be to exploit the “~z” term in equation (2) to eliminate the
“%” terms.)
1) 2x-y+3z2=3 — multiplyby2 — 4x—%+6z:6
(2) 3x+2y—-2=8 — leaveitalone — —3x+/?/f -2=8

Add the columns — x +5z=14
Equation (3) x+5z2=14

That’s as far as we can go. The solution to this system of two equations is the equation
X +5z=14. Note: this is a linear equation with two variables in it. That means it graphs as a
line! This makes perfect sense. The original system was two planes, and we have discovered
these planes have a line of intersection. Again, just like the “north” wall and the “west”
wall intersect along that seam running up the northwest corner of your room, two planes can
intersect along an infinite line. There are infinite points of intersection between
these two planes, all of them lying on the line x+52=14.

Just as we did in question 5 above, whenever we have infinite solutions to a system of
equations, we will introduce a parameter. The easiest thing here is to make z the parameter
(but you could make x the parameter if you prefer).

I will let z = t, a parameter. Subbing z = t into x+52 =14, we get:

x+5t=14 - x=14-5t
We have established so far x = 14 - 5t, 2 = t. Sub these into either one of the original

two equations to solve y. I will use equation (1) 2x—-y+3z=3:
2(14-5t)-y+3(t)=3 — 28-10t—y+3t=3 — 28-7t-y=3
Move everything over to the right side of the equation except the “—y” term:

-y=3-28+7t > —y=-25+7t — multiply both sidesby -1 —» y=25-7t
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18 LESSON 1: SYSTEMS of LINEAR EQUATIONS (Matrices for Management)

Thus,x = 14 - 5t,y = 25 - 7t, 2 = t or (14 - 5t, 25 - 7t, t) is the solution to this
system. We have given people a “recipe” to generate the infinite number of points that satisfy
this system of equations. By selecting different values of the parameter t, we generate different
solutions. For example, if t = 0, we get the solution (14, 25, 0); if t = 1, we get the solution
(9, 18, 1); if t = 2, we get (4, 11, 2); etc.

That is the beauty of using parameters to describe infinite solutions: we get an easy

recipe to generate all the solutions. We can let t be any real number. (The parameter t doesn’t

have to be just counting numbers like O, 1, 2, ...; we can let t be 1/3, J5 , —4.72, whatever, and
they all generate solutions to the system.)

Let’s prove (14 - 5t, 25 — 7t, t) is the solution to the system by showing it satisfies both
of the equations.

Subbing (14 - 5t, 25 — 7t, t) into equation (1) 2x—y+3z =3, we get:
2(14-5t)—(25-7t)+3(t)=3 — 28-10t-25+7t+3t=3 — 3=3V

Note, the t terms cancel out.

Subbing (14 - 5t, 25 — 7t, t) into equation (2) —3x+2y —z =8, we get:

—3(14-5t)+2(25-7t)—(t)=8 — —42+15t+50—-14t—t =8 — 8=8"

Note, the t terms cancel out.

The solution to this system of equations isx = 14 -5t,y =25-7t,2 =t
where t is any real number.” Interpreting this solution geometrically, we
have discovered a graph of these two planes has a line of intersection. All
the points in the form (14 - 5t, 25 - 7t, t) are on this line.

" Be sure to point out that t is any real number. It is generally taken for granted that t, being a parameter, is any
real number, but some profs will deduct marks if you don’t specifically say this in your answer.
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LECTURE PROBLEMS

For your convenience, here are the 8 questions I used as examples in this
lesson. Do not make any marks or notes on these questions below. You want to keep these
questions untouched, so that you can look back at them without any hints. Instead, make any
necessary notes, highlights, etc. in the lecture in Lesson 1 above.

For questions 1 to 8 below, solve the system using the elimination method, and
interpret the solution geometrically.

X+2y+3z2=6
6. {2x+3y+52=9
Sx+2y—z=-2

2x-y-4z=0
7. yx+2y+3z=1
2x+y+5z=2

s 2x—-y+32=3
) -3x+2y—2=8
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Lesson 2: Cost & Revenue
Lecture Problems:

(Each of the questions below will be discussed and solved in the lecture that follows.)

1. Find the equations of the following lines:
(a) The line with a slope of 5/3 and a y-intercept of —2.
(b) The line passing through the points (2, -3) and (6, 7).
(c) The line passing through the point (1, 1) and perpendicular to the line 2x -7y =5.
(d) The line passing through the point (1, —-1) and parallel to the line y =4x+6.

2. The cost C (in thousands of dollars) of a company that produces g widgets is given by
C =12q+40.

(a) What is the cost of producing 50 widgets?
(b) How many widgets would cause a cost of $124,000?

3. The table below shows the number of inhabitants n (in thousands) in three cities and the
amount of garbage produced each week g (in hundreds of metric tons).

n|20 (25|40
g|17135|89

(a) Does this data show a linear trend?

(b) Use this data to state g as a function of n.

4. In 1990, a company’s sales were 20 million dollars. In 2000, they were 27 million
dollars. Assuming the trend is linear, predict the sales in 2003.

5. A theatre has a fixed cost of $3,000 per day and a variable cost of $2 per customer. The
admission fee is $6 per customer.

(a) Find the cost and revenue functions. How many customers are needed to break
even?

(b) Find the profit function and illustrate the break even point calculated in part (a) by
sketching a graph of the profit function.

(c) What is the marginal cost, marginal revenue and marginal profit?

© Grant Skene for Grant’s Tutoring (text or call (204) 489-2884) DO NOT RECOPY



(Matrices for Management) LESSON 2: COST & REVENUE, DEMAND & SUPPLY 21

© Grant Skene for Grant’s Tutoring (www.grantstutoring.com) DO NOT RECOPY



22 LESSON 2: COST & REVENUE, DEMAND & SUPPLY (Matrices for Management)
Ts 2 5“&1‘2;/\4 a Line wre rnoed:
?'Q,Z}T'Z::m m’(ﬁu?ﬁm«z (Xo,‘;(o)
ond The s Lope dZ'ZAe Live <~
Wa can Thon thae The TBM'—‘L"I’”
Loumada T gt The W :
fgl‘ﬁo: % (x~><o)) M ey s

Yy = mx +lb l (b co-olug-W)

/O\X .f.lo‘a,l:: c Z(wa{am)wm@mw
= 4 conrnee.

© Grant Skene for Grant’s Tutoring (text or call (204) 489-2884) DO NOT RECOPY



(Matrices for Management) LESSON 2: COST & REVENUE, DEMAND & SUPPLY
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Cost and Revenue Problems
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Homework:

< Study the lesson thoroughly until you can do all of questions 1 to 5 on page 20
from start to finish without any assistance.

2 Do all of the Practise Problems below (solutions are on page 36).

Practise Problems:

1. Producing x cars costs C (x) =10x+150 thousand dollars. Each car is sold for 20
thousand dollars.

(a) Find the revenue function R(x).
(b) How many cars must be sold to break even?

(c) What is the profit if 50 cars are sold?
(d) How many must be sold for a profit of $400,000?

(e) Sketch C(x) and R(x) on the same graph.

2. A firm producing the Latest Craze kid’s doll finds the total cost of producing and selling
x dolls is given by C(x)=20x+3600. They will charge $60 per doll.

(a) How many dolls must be sold to break even?

(b) What is the profit if 100 dolls are sold?

(c) How many must be sold to produce a profit of $10,000?
(d) What is the average cost per doll if 50 are produced?

3. A factory produces radios. The cost of producing x radios is C (x) =13x+2400 dollars,
and they are sold for $25 each.

(a) What is the marginal cost?

(b) Find the revenue (income) function R(x). What is the break-even point?

(c) Find the profit function P(x). What is the marginal profit?
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4. A small company produces doohickeys. It costs $450 to produce 5 doohickeys, and for
each additional doohickey, the total cost increases $30.

(a) Find a linear function C (x) for producing x doohickeys.

(b) If the selling price is $45 per doohickey, find the revenue function R(x).

(c) Find the break-even quantity if all doohickeys produced are sold.

5. A small firm produces paperweights. The first paperweight costs $25 to produce, and
each additional paperweight costs $5 more.

(a) Find the linear cost function C (x) for producing x paperweights.

(b) If the price is $9 per paperweight, find the revenue function.
(c) Find the break-even quantity, if all paperweights produced are sold.
(d) How many paperweights must be sold to make a profit of $1000?
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1. (a) |R(x)=20x thousand dollars.l

1. (b) Break-even occurs when R(x) = C(X) :
10
| They must sell 15 cars to break even. |
1. (c) Profit = Revenue - Cost > P(x)=R(x)-C(x):

P(x)=20x —(10x +150) —|P(x) =10x - 150
P(50)=10(50)-150 = 500~ 150 =
| The profit if 50 cars are sold is $350,000. |
1. (d) Remember: we are using thousands of dollars for our units.
Set P(x) equal to 400 thousand dollars not 400,000!
550 _
10
| To make a profit of $400,000 sell 55 cars.
1. (e) For C(X) =10x+150, clearly the y-intercept is 150. For a

second point, the best choice is the break-even point found in
(b) above:

When x =15:C(15)=10(15)+150 =300 — Plot (15, 300).

20x =10x +150 - 10x =150 — |x 15

P(x):10x—150:400—>10x:550—> X 55

For R(X) =20x , clearly the y-intercept is 0 and it also passes
through the point (15, 300), since the Cost and Revenue

graphs always intersect at the break-even point. Thus:

R(x) =20x

2 C(x)=10x+150
3
=)
k]
] (15, 300)
=
8
2150
=
[_1

Number of Cars

DON'T FORGET: LABEL YOUR AXES WHEN DRAWING GRAPHS.
2. (a) Clearly: R(X) =60x — Set R(X) = C(x) :
_ U

40
I They must sell 90 dolls to break even. |
2. (b) Profit = Revenue — Cost — P(x) = R(x) —C(x) :

P(x) = 60x — (20x + 3600) — [P (x) = 40x — 3600)
P(100) = 40(100) - 3600 = 4000 — 3600 = 400

| If 100 dolls are sold, the profit is $400. |
2. (o)

60x = 20x + 3600 — 40x = 3600 — |x 90

13,600 _
40

340

P(x) = 40x — 3600 = 10,000 —> 40x = 13,600 —> |x

3. (a) Recall: marginal cost is the slope of the cost line. By
y=mx+b form: C(x)=13x+2400 , we see the slope, m=13.

m b

I The marginal cost is $13 per radio.
3. (b) The radios sell for $25 each: R(x)=25x .

Break-even occurs when R(x)=C(x):

25x =13x + 2400 — 12x = 2400 —» x=2‘1}%=200

I They must sell 200 radios to break even. |
3. (e) Profit = Revenue — Cost — P(x)=R(x)—-C(x):

P(x) =25x —(13x +2400) — [P(x) = 12x — 2400

m

The marginal profit is the slope, m = 12.
P(x) =12x-2400
and the marginal profit is $12 per radio.
4. (a) It costs $450 to produce 5 doohickeys: When x=5, C=450.
i.e. We have been given the point (5, 450).
For each additional doohickey, the total cost increases $30. This

gives us the variable cost — the slope m=30.
Use the point-slope formula:

Y—-yo=m(x—-xq ) y=-450=30(x-5)
450 30 5

¥ =450 = 30x — 150 — [y = 30x + 300

But y is the cost, C (x) , therefore:

The profit function is

The cost functionis  C(x)=30x+300.

4. (b) The selling price is $45 per doohickey: | R(x) =45x |
4. (c) Break-even when R(x) = C(x) :

300 _
15
I They must sell 20 doohickeys to break even. |

5. (a) The first paperweight costs $25 to produce: When x=1,
C=25. i.e. We have been given the point (1, 25).
Each additional paperweight costs $5 more. This gives us the
variable cost — the slope m=5.
Use the point-slope formula:
y-Yo=m(x-x5 )>y-25=5(x-1)
25 5 1

¥y—-25=5x-5-|y=5x+20

But y is the cost, C(x), therefore:

45x =30x +300 — 15x =300 — |x 20

The cost function is

C(x)=5x+20.

5. (b) The price is $9 per paperweight: R(X) =9
5. (¢) Break-even when R(X) = C(x) :

9x =5x+20—>4x=20— x:?:S

To produce a profit of $10,000,
they must sell 340 dolls.

total cost of production _ C(x)
number of items produced x

: €(50) = 20(50) + 3600 = 1000 + 3600 =

It costs $4600 to produce 50 dolls: average cost = 45_:% =

2. (d) average cost =

| The average cost if 50 are produced is $92 per doll. |

I They must sell 5 paperweights to break even. |
5. (d) Profit = Revenue — Cost - P(x)=R(x)-C(x):

P(x) = 9x = (5x +20) >[P(x) = 4x - 20|

Set P(X) equal to $1000 and solve for x:

P(x):4x72O:1000—)4x:1020—) x:¥:255

They must sell 255 paperweights
to make a $1000 profit.
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Lesson 3: Row-Reduction and Linear Systems

The Rank of a Matrix:

@ The rank of a matrix equals the number of leading 1’s it would have in its row-
reduced echelon form.

o If a system is consistent (one or infinite solutions), the rank of the coefficient matrix
is equal to the rank of the augmented matrix.

® If a system is inconsistent, the rank of the coefficient matrix is less than the rank of
the augmented matrix. (The augmented matrix will have a rank that is one higher
than the coefficient matrix.)

® The rank of the coefficient matrix could never be more than the rank of the
augmented matrix.

Lecture Problems:

(Each of the questions below will be discussed and solved in the lecture that follows.)

1. Suppose that the following matrices are the row echelon form of the augmented matrix
of a system of linear equations. For each matrix answer the following questions:

(i) How many equations and how many variables were in the original system?
(ii) What is the rank of the coefficient matrix and the augmented matrix?
(iii) How many parameters are in the solution?

(iv) List the solution(s), if possible.

1 0 O 3 1 20 3 0| 4
(@A) (01 0| 5 () |00 1 2 0/|-3
0O 0 1]-2 000 O01]O0
1 2 0| 3
(¢) |[O1 3 4|-5

o
o
o
o
[
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2x + 3y + 2z = a
2. Consider the system x + 2 = b.
y - 2z = ¢
Suppose (1, 2, 1) is a solution to this system, find a, b and c.
3. Solve the following systems of equations using Gauss-Jordan elimination.
2x, + 2x, X, + x; = 2
-x;, - X, + 2x, — 3x, + x; = 5
(a) 1 2 3 4 5
x, + X, 2x, - X, = -2
x, + x, + x5 = 1
3x + 7y + 22 = 9
(b) 2x + 4y + 22 = 4
x + 3y - 2z =4
x, + x, + x; + x, =1
2x, + 3x, + 3x = 1
(c) 1 2 3
-x; — 2x, — 2x, + x, = 0
- X, - X5 + 2x, = 1
2x + y + z = 2
(d) y - z.= -1
X + 2z = 1
4. Solve the system of equations
-y + 2z = 3
x -y -2 =0
-X -z = -3

using Gaussian elimination and back substitution.
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5. Solve the two systems of equations below simultaneously:

x + 6y + 3z = 34 x + 6y + 3z = 30
X + 6y + 2z = 30 and x + 6y + 2z = 24
2y + 2z = 14 2y + 2z = 16
6. Given the system of equations
x - x, + 2x; = 0
X, x, = k,
-x;, + 2x, — 3x; = 1

find, if possible, the value of k if
(a) the system has infinite solutions.
(b) the system has a unique solution.

(c) the system has no solution.

7. Given the augmented matrix

N = O

1 11

0 1(2],
0 al|b
find conditions on real numbers a and b such that:
(a) the system has no solution.

(b) the system has a unique solution.

(c) the system has infinitely many solutions.
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8. Alinear system of equations has been row-reduced into this augmented matrix (it is not
necessarily in RREF)

1 0
01 -5 6 |,
0 0

find all real numbers a such that:
(a) the system has infinitely many solutions.
(b) the system has no solution.

(c) the system has a unique solution.

9. Anne, Betty and Carol went to their local produce store to purchase some fruit. Anne
bought one pound of apples and two pounds of bananas and paid $1.85. Betty bought
two pounds of apples and one pound of grapes and paid $3.65. Carol bought one pound
of bananas and two pounds of grapes and paid $3.95. Find the price per pound for each
of the three fruits.

10. A company owns three types of trucks. These trucks are equipped to haul two different
types of machines per load. Truck 1 can haul 2 of machine A and 3 of machine B. Truck
2 can haul 1 of machine A and 2 of machine B. Truck 3 can haul 3 of machine A and 4
of machine B. Assuming each truck is fully loaded, how many trucks of each type should
be sent to haul exactly 18 of machine A and 26 of machine B. If there is more than one
possible solution provide all possible solutions, keeping in mind that the company can
use no more than 4 of any particular type of truck.

11. Listall 3 X 2 row-reduced echelon form matrices.

12. Consider the linear equation with three variables: ax+by+cz=d (1)

where a, b, ¢, and d are any real number but d # 0.

Then, the associated homogeneous equation would be: ax+by+cz=0 (2).

Let (x,, y,, 2,) and (x,, y,, ,) be two solutions to equation (1), and let (x,, y,, %,) be
a solution to equation (2).

(@) Show (x, —x,, y, —¥,, 2, —%,) is a solution to equation (2).
(b) Show (x1 —Xg, Y1 —Yo» % —zo) is a solution to equation (1).

(¢) Show (kxo, ky,, kzo) is a solution to equation (2) where k is any real number.
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Row-REPUCEN EcuEron Form (RREF)
A maro o b W-NMW
o e (RREFE €01 skt f saliofiro
thedo '('\WA&W . 1
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N"Jt Row E chalom Forum (REF) &
Wlf RREF 2ncyd, entdh,

Y Ch cmATion Mma‘(.j/\wpo'

el U 1-
@ﬁ@@&:‘q (;j?) > REF

Wa wdd never e KE/: UL
RREF.

S ruelues oA wnlr RREFR.
, AKX +3 s . 2 2| &
& o« -7~i—l0 “w (% =% |0
A/
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We hooot P/ AT
A lx, =% >+ Y, -go) + clz~2) =do
pro\)wxg (x,~%y 5 Y=o, 2 2 ) O
A Qm s %ujlaym(l)

2> Prove (Kx,, Ky, K2, w «
seluwdlidm & axily+ez =0

ks = cux-t-—logl +C 2

Sube o x=Kkx,, yc Ky, 2= Kz,
LHS = olKx)+ blRy,)+ clKz,)
LHS = akx,+b Kg_o-(-ckzo

““K ULo A an 'Pa,c..‘("o{‘,,
Focter K ouk.

LU = K (ax, + by, +<=2,)
\_,———N
Welkrow  ax,+hy ,+cz2,=0
LUS = k(o) —> [JL4S = O]

WQ haare O oven
o lEx )+ (Ky )+ c(Kz)

K”\W:ﬂ‘g (kx,, Ky, Kz)\ @ a
Sobulion & ox +y+ cz== 0.
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Homework:

S Memorize the facts about The Rank of a Matrix on page 37.

< Study the lesson thoroughly until you can do all of questions 1 to 12 on pages 37
to 40 from start to finish without any assistance.

< Do all of the Practise Problems below (solutions are on pages 97 to 101).

Practise Problems:

1.

In each of the following parts (a) — (c) of this question, you are given the row-reduced
echelon form of the augmented matrix of a system of linear equations. In each case, say
whether the system is inconsistent, has a unique solution, or has infinitely many
solutions. If the system is inconsistent, explain why. If the system is consistent, state the
solution(s).

1 0 0| 2
1 50 0]0
1 00]|0 h 4V 0010|0
a b 0 0 1| 6 c
()[001‘3J (b) ()00010
0 0 0 1
0 00 0fO0
O 0 O| O
(a) Write the augmented matrix for the system:
x, = 2x, + x; + 2x, = -3
—2x; + 4x, - x, = 1
x, + 2x, = -4

(b) Find the reduced row-echelon form for the augmented matrix in (a).

(c) Write all solutions to the system in (a).

x — y + 3z = -1
: . L -x + y - 2z = 0
A system of linear equations is given by .
3x - 3y + 52 = 1
X -y = 2

(a) Find the reduced row echelon form of the augmented matrix of the system.

(b) Write all the solutions to the system.

(c) Find the solution set which has x = 3.
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90 ROW-REDUCTION PRrAcTISE PROBLEMS (Matrices for Management)

4. The augmented matrix of a system of linear equations has the following row-reduced
echelon form matrix:

101 0]0
0110]0
R=[0 0 0 1|0
000 0|1
0 0 0 0]0]

(a) How many equations are there in the original system of linear equations?
(b) How many variables does the system of linear equations contain?

(c) How many solutions does the system have? Explain.

(d) How many leading 1's does R contain?

(e) What is the rank of the coefficient matrix?

5. Determine the number of solutions the following linear system of homogeneous
equations has without solving the system. Give a reason for your answer.

3x;, + 5x, — 7x; + x, = 0
x, — 3x, + X = 0

6. Each matrix A and B below is the augmented matrix of a system of linear equations in
X1, X, X3, and x,. Foreach of A and B do the following.

(i) Put the matrix into reduced row echelon form, while stating exactly which
elementary row operations you are using.

(ii) State how many solutions the system has: none, one, or infinitely many.

(iii) If the system has solutions, give the general solution in vector form, usin
Yy g g g
parameters s, ¢, u, v,... (as necessary).

121 -3|2
(@) A=|0 0 1|4
2 4 2 -6|4]
1 2 2 3|-5
(b) B=(0 1 0 1|-4
2 4 4 6| 5]
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2x, -

7. Given the system

2x, -

4x, -

4x,
4x,

8x,

+ + +

2x,
3x,
3x,

X3

+

2x

3x,

4

4x,

Xy

g N DN

0

91

(a) Solve the system of equations above by completely reducing the augmented matrix
to row-reduced echelon form.

(b) Interpret the solution geometrically (e.g., as a point, line, plane, hyperplane, etc.).

(c¢) What is the rank of the augmented matrix?

8. Solve the following systems of equations using Gauss-Jordan or Gaussian elimination:

(a) x, + 2x,
3x, + 4x, -
X + Yy -
@ x - y +
2x + 3y -
(@) x, + X, +
2x, + 2x, +
2x, + 2x, -
S — VG
(0 X, + X, -
X, + 2x,
2x, + 4x, +
® -x, — 2x,
x2
X + y -

x3
2x,

U1 U
W W
n

2x,
3x,

V4 =

(h) 2x + y + 2z =

4x + 3y

7

2x,
4x,
2x,
3x,

o © © O

(b) 4x,
2x,

X + 2y + 3z
(d) 2x +

+

+

X +

= 18

y + 3z
y + 2z

XS
5Xx,
3x,

-7
- 4
= 0

© Grant Skene for Grant’s Tutoring (www.grantstutoring.com)

DO NOT RECOPY



92 ROW-REDUCTION PRACTISE PrRoBLEMS (Matrices for Management)

9. Solve the following systems of equations using Gauss-Jordan or Gaussian elimination:

x, + 2x, + 2x, = 4
@ 2x;, + 4x, + 2x; + 5x, = 2
3x, + 6x, + 2x;, + 7x, = 6
x + o x, + X3 + x, + X5 = 2
M) x, + x, + x; + 2x, + 2x; = 3
x, + x, + x; + 2x, + 3x; = 2
X +y =6 - z
(¢ 2z -y = 2 - x
x - 2 =4 -y
X -y = 5
d 3x + y - 2z = 3
2y - x + z = -8
2x; + 2x, + 2x; + 2x, = 2
(e) Xl + x3 = 3
2x, + X, + 2x;, + x, = 4
3x, + 3x; = -3
® x - 2x, - 3x; = 2
-x, + 4x, + 6x;, = 8
3, + 3x, + 6x, = 3
2x, + X, — X, =
® - x, - 5x;, = 1
-5x; - 2x, + 5x;, = -8
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9. (Continued) Solve the following systems of equations using Gauss-Jordan or Gaussian

elimination:
x + 2x, - 5x; + x, = 0
(h) 2x, - 2x, + 8x; + 8x, = 6
3x; + 2x, - 3x; + 7x, = 4
X, + X, - X3 + x, = 2
(i) -2x, + X, = -4
x, - X, — 2x; + 2x, = -1
x + 3x, - X3 + x, - 2x; = 8
@ x + 6x, — 4x, + 2x, - x;, = 14
2x; + 8x, — 4x; + 3x, — 4x, = 21
X+ X, + x3 + X, + X5 = 2
K x + x, + x5 + 2x, + 2x;, = 3
x, + x, + x; + 2x, + 3x. = 2
X, + 2x, = 3
m =2x; + x, + Xy - 4x, = -7
x, — x, = 1
=2x;, + X, —Xx, - 2x, = -9
(m) 7%, +3x,+x;=0

7x, +3x,+x, +x; =1

-40x + 16y + 9z = 1
(n) 13x - S5y - 3z = -2
5Sx — 2y - 2z = -1
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10.

11.

12.

Given the following augmented matrix for a system of linear equations:

1 0 0]2

0 k+1 0]|0].

0 O k|5

For what value(s) of k, if any, are there:

(a) a unique solution?
(b) infinitely many solutions?
(¢) no solution?

Give reasons for your answers.

Find all ¢ such that the system below has no solutions.

x — 2y =

1.a _
5 y

Find a value of p and q so that the system

X + z
Yy + 2
py + gz

(a) has a unique solution.
(b) has an infinite number of solutions.

(c¢) has no solution.

© Grant Skene for Grant’s Tutoring (text or call (204) 489-2884)

DO NOT RECOPY



(Matrices for Management) ROW-REDUCTION PRACTISE PROBLEMS 95

1 0 O 2
0 1 0 |-1 . .
13. Let R= 0 0 51 p be a row-echelon form of the augmented matrix of a linear
a J—
0 0 O 0
system.

(a) What are the number of equations and the number of variables in the system?
(b) Find all of the values of a and b for which the system has a unique solution.
(c) Find all of the values of a and b for which the system has no solution.

(d) Find all of the values of a and b for which the system has infinitely many solutions.
How many parameters are there in the solution set?

1 0 -1 2
01 3 ] .
14. Let 0 0 0 be a row-echelon form of the augmented matrix of a linear
a
0 0 0 |b+1
system.

(a) What are the number of equations and the number of variables in the system?
(b) Find all values of a and b such that the system has no solutions.

(c) Find all of the values of a and b such that the system has a unique solution.

2 =3 5|a
15. let A=| 1 -1 2 | 0 | be the augmented matrix of a linear system.
-4 6 -10|1

(a) What are the number of equations and the number of variables in the system?
(b) Find all values of “a” for which the system has no solution.

(c) Find all of the values of “a” for which the system has a infinitely many solutions.

© Grant Skene for Grant’s Tutoring (www.grantstutoring.com) DO NOT RECOPY
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1 0 0|2
16. Let the augmented matrix of a linear system be givenby {0 1 0| 3.
0 0 x|y

For what values of x and y is there
(a) No solution?
(b) Exactly one solution?

(c) Infinitely many solutions?

17. Suppose that the augmented matrix of a linear system of equations is given by
1 -2 3 9
-1 3 0] -5
2 -5 k|3k+5

For what values of k is there

(a) exactly one solution?

(b) infinitely many solutions?

X+y+2z=a

18. Consider the system .
2x+by+4z=1

In each case below, determine all values of a and b which give the indicated number of
solutions. If no values of a and b exist, explain why not.

(a) No solution.
(b) Exactly one solution.

(c) Infinitely many solutions.
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