MATH 1300 ASSIGNMENT PROBLEMS (UNIT 2)

- [10] 1. Let P = (2, 3, 1), Q = (4, 1, 2) and R = (1, 2, -3) be 3 points in \mathbb{R}^3 .
 - (a) Find the components of the vector \overrightarrow{PQ} and \overrightarrow{PR} .
 - (b) Find a set of parametric equations for the line through the points P and R.
 - (c) Use the vectors \overrightarrow{PQ} and \overrightarrow{PR} to find a normal vector to the plane through the 3 points P, Q and R.
 - (d) Find a standard form equation of the plane through the 3 points P, Q and R.
- [10] 2. A plane passes through 3 non-collinear points P = (-2, 1, 0), Q = (-1, 3, 1) and R = (2, -2, 3).
 - (a) Find the standard form equation of the plane.
 - (b) The line l passes the points P and Q. Find its two-point vector form equation. Find the corresponding parametric equations.
- [10] 3. Let l: (x, y, z) = (4, 2, 3) + t(5, 3, -2) be a line in \mathbb{R}^3 and let $\pi: x y + z = 4$ be a plane in \mathbb{R}^3 .
 - (a) Find a vector \mathbf{v} parallel to line l and a vector \mathbf{n} that is normal to the plane $\boldsymbol{\pi}$.
 - (b) Show that the line l is parallel to the plane π .
 - (c) Set t = 0 in the vector equation for the line l to find a point P on the line l. Set y = z = 0 to find a point Q on the plane π . Find the components of the vector \overrightarrow{QP} .
 - (d) Find the distance between the line l and the plane π .
 - (e) Find the point of intersection of the line (x, y, z) = (2, 3, -1) + t(3, -1, 2) and the plane π .

- [10] 4. Given the skew lines l_1 : x = 2+3t, y = 3-t, z = 1+2t and l_2 : x = 3-2s, y = 5+3s, z = 1+s, find the following.
 - (a) A vector $\mathbf{v_1}$ parallel to line l_1 and a vector $\mathbf{v_2}$ parallel to line l_2 .
 - (b) A vector **n** that is orthogonal to both lines l_1 and l_2 .
 - (c) Sine of the angle between the lines l_1 and l_2 .
 - (d) A point P on line l_1 and a point Q on line l_2 . Find also the vector \overrightarrow{PQ} .
 - (e) The distance between the lines l_1 and l_2 .
- [10] 5. Given the point P = (3, 1, 2) and the plane 2x 3y + z = 1, find the following.
 - (a) A set of parametric equations for the line through P that is also orthogonal to the given plane.
 - (b) The point of intersection of the line from part (a) with the given plane.
- [10] 6. Given π_1 : x + ay + 3z = 6 and π_2 : ax + 4y + 6z = 4 are standard form equations of two planes in \mathbb{R}^3 , find the following.
 - (a) A normal vector \mathbf{n}_1 to the plane $\boldsymbol{\pi}_1$ and a normal vector \mathbf{n}_2 to the plane $\boldsymbol{\pi}_2$.
 - (b) For what value(s) of *a* are these two planes parallel to each other?
 - (c) For what value(s) of a are these two planes perpendicular to each other?
 - (d) If a = 1, these two planes intersect each other. Find the cosine of the dihedral angle between the two planes when a = 1.

.