

MATH 1300 ASSIGNMENT PROBLEMS (UNIT 1)

[10] 1. AOB is the diameter of a circle with centre at O and C is any other point on the circle. Denote the vector \overrightarrow{OA} by **a** and the vector \overrightarrow{OC} by **c**.

- (a) Write the vectors \overrightarrow{AC} and \overrightarrow{CB} as linear combinations of the vectors **a** and **c**.
- (b) Use vector methods to show that $\angle ACB$ is a right angle.
- [10] 2. Let A = (2, 1, -5) and B = (1, -2, 4) be two points in \mathbb{R}^3 .
 - (a) Find the components of the vectors \overrightarrow{AB} and \overrightarrow{BA} .
 - (b) Find the coordinates of the point C if $\overrightarrow{AC} = \overrightarrow{CB}$.
 - (c) The point D = (k, 1, 5) is equidistant from the points A and B. Find the value(s) of k.
 - (d) Find the coordinates of the point X for which $\overrightarrow{AX} = 2\overrightarrow{AB}$.
- [10] 3. Let $\mathbf{u} = (4,3,1)$, $\mathbf{v} = (5,4,-2)$ and $\mathbf{w} = (7,-3,4)$ be three vectors in \mathbb{R}^3 . Find the following.
 - (a) 2u 3v + w
 - (b) **u•v**
 - (c) $\mathbf{v} \times \mathbf{u}$
 - (d) proj_vu
 - (e) sine of the angle between the vectors \mathbf{u} and \mathbf{v} .

- [10] 4. Let $\mathbf{u} = (4, 2, 7)$ and $\mathbf{v} = (2, 1, k)$ be two vectors in \mathbb{R}^3 .
 - (a) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be parallel? Explain.
 - (b) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be orthogonal? Explain.
 - (c) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be of equal length?
- [10] 5. Let *l*: 3x + 4y = 12 be a line and P = (6, 7) be a point in \mathbb{R}^2 .
 - (a) Let Q be the point on the line l having its y-coordinate = 0 and let R be the point on the line l having its x-coordinate = 0. Find the coordinates of the points Q and R.
 - (b) Plot the points P, Q, R and the line l on a two-dimensional Cartesian coordinate system.
 - (c) Find the components of the vector \overrightarrow{QP} .
 - (d) Find a normal vector \mathbf{n} to the given line l.
 - (e) Find the distance between the point P and the line l.
- [10] 6. The four points A(5,0,0), B(0,0,2), C(0,4,0) and D(5,6,-3) form a quadrilateral lying on the plane 4x+5y+10z=20. Find the area of this quadrilateral.

