MATH 1300 ASSIGNMENT PROBLEMS (UNIT 2)

[10] 1. Let P = (1, 3, -1), Q = (2, 1, -2) and R = (-2, 1, -3) be 3 points in \mathbb{R}^3 .

- (a) Find the components of the vector \overline{PQ} and \overline{PR} .
- (b) Find a set of parametric equations for the line through the points P and R.

(c) Use the vectors PQ and PR to find a normal vector to the plane through the 3 points P, Q and R.

(d) Find a standard form equation of the plane through the 3 points P, Q and R.

[10] 2. Let π_1 : 3x - 2y + 2z = 6 and π_2 : 2x - 3y + z = 9 be two planes in \mathbb{R}^3 .

- (a) Find a normal vector \mathbf{n}_1 to the plane $\boldsymbol{\pi}_1$ and a normal vector \mathbf{n}_2 to the plane $\boldsymbol{\pi}_2$.
- (b) Find the cosine of the dihedral angle between the planes $\boldsymbol{\pi}_1$ and $\boldsymbol{\pi}_2$.
- (c) Find a vector **v** parallel to the line of intersection of the planes $\boldsymbol{\pi}_1$ and $\boldsymbol{\pi}_2$.
- (d) Find the point on the line of intersection of the planes π_1 and π_2 whose y-coordinate is 0.
- (e) Use the results from parts (c) and (d) to find a set of parametric equations of the line of intersection of the planes π_1 and π_2 .
- [10] 3. Let l: (x, y, z) = (-1, 2, 2) + t(3, 1, -1) be a line in \mathbb{R}^3 and let $\pi: x 2y + z = 5$ be a plane in \mathbb{R}^3 .
 - (a) Find a vector **v** parallel to line l and a vector **n** that is normal to the plane π .
 - (b) Show that the line *l* is parallel to the plane π .
 - (c) Set t = 0 in the vector equation for the line *l* to find a point P on the line *l*. Set y = z = 0 to find a point Q on the plane π . Find the components of the vector \overrightarrow{QP} .
 - (d) Find the distance between the line l and the plane π .
 - (e) Find the point of intersection of the line (x, y, z) = (2, 3, -1) + t(1, 2, -1) and the plane.

- [10] 4. Given the skew lines l_1 : x=1-2t, y=3+t, z=1+3t and l_2 : x=1+s, y=2-2s, z=-1+3s, find the following.
 - (a) A vector $\mathbf{v_1}$ parallel to line l_1 and a vector $\mathbf{v_2}$ parallel to line l_2 .
 - (b) A vector **n** that is orthogonal to both lines l_1 and l_2 .
 - (c) Sine of the angle between the lines l_1 and l_2 .
 - (d) A point P on line l_1 and a point Q on line l_2 . Find also the vector \overrightarrow{PQ} .
 - (e) The distance between the lines l_1 and l_2 .
- [10] 5. Given the point P = (2, 1, 3) and the plane x 2y + 2z = 7, find the following.

(a) A set of parametric equations for the line through P that is also orthogonal to the given plane.

(b) The point of intersection of the line from part (a) with the given plane.

- [10] 6. Given π_1 : x + ay + 2z = 5 and π_2 : ax + 9y + 6z = 12 are standard form equations of two planes in \mathbb{R}^3 , find the following.
 - (a) A normal vector \mathbf{n}_1 to the plane π_1 and a normal vector \mathbf{n}_2 to the plane π_2 .
 - (b) For what value(s) of *a* are these two planes parallel to each other?
 - (c) For what value(s) of *a* are these two planes perpendicular to each other?

(d) If a = 1, these two planes intersect each other. Find the cosine of the dihedral angle between the two planes when a = 1.