MATH 1300 ASSIGNMENT PROBLEMS (UNIT 4)

[10] 1. Let
$$A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 0 & 1 \\ 3 & 5 & -2 \end{bmatrix}$$
 and let $B = \begin{bmatrix} 5 & 3 & -1 \\ 2 & 4 & 3 \\ 1 & -2 & 0 \end{bmatrix}$. Find the following

(a) $A+2B^{T}$

(b) AB

(c) BA

(d) The matrix C for which $2A + C^{T} = B$.

[10] 2.(a) Which of the following matrices are elementary matrices?

[1	-	0	2		[3	0	0		0	0	1]
(i) [1 (i) [0 ()	1	0	(ii)	0	2	0	(iii)	0	1	0
)	0	1_		0	0	1_		1	0	0

(b) Let $A = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{bmatrix}$. Find an elementary matrix E such that EA = B if

(i)
$$B = \begin{bmatrix} 1 & 4 & 3 \\ 4 & 9 & 11 \\ 3 & 2 & 4 \end{bmatrix}$$
 (ii) $B = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 1 & 5 \\ 1 & 4 & 3 \end{bmatrix}$ (iii) $B = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 1 & 5 \\ 9 & 6 & 12 \end{bmatrix}$

(c) Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$. Find two elementary matrices E_1 and E_2 such that $E_2 E_1 A = I$.

[10] 3. Find the inverse of
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 3 & 3 & 1 \\ 3 & 3 & 4 & 3 \\ 4 & 4 & 4 & 1 \end{bmatrix}$$
. Show all your work and verify that your answer

is correct.

[10] 4. Consider the following system of linear equations

$$x_{1} + x_{2} + x_{3} = 4$$

$$2x_{1} + 3x_{2} + 3x_{3} + 1x_{4} = 3$$

$$3x_{1} + 3x_{2} + 4x_{3} + 3x_{4} = 2$$

$$4x_{1} + 4x_{2} + 4x_{3} + 1x_{4} = 1$$

- (a) Rewrite this system of linear equations as a single matrix equation in the form $A\mathbf{x} = \mathbf{b}$.
- (b) Use the matrix A^{-1} to find the solution **x**. [Hint: See problem 3 for A^{-1} .]

[10] 5. Provide examples to illustrate the following.

- (a) A 3×3 matrix B such that $B^2 = I$ with $B \neq I$ and $B \neq -I$.
- (b) A 3×3 nonzero matrix C such that $C^3 = O$ but $C^2 \neq O$.
- (c) A 3×3 matrix D such that $D^T = D$ with $D \neq I$ and $D \neq O$.
- (d) A 3×3 matrix F such that $F^T = -F$ with $F \neq O$.

- [10] 6. The citizens of Oz have a choice of 3 political parties in their municipal elections, the Blue party, the Green party or the Red party. A study of past voting patterns shows that if a citizen voted for the Blue party in one election, the probability that he/she will vote for the Blue party in the next election is 70%, the probability he/she will vote for the Green party is 20% and the probability he/she will vote for the Red party is 10%. If a citizen voted for the Green party in one election, the probability that he/she will vote for Green party in the next election is 60%, the probability he/she will vote for the Blue party is 20% and the probability he/she will vote for the Blue party is 20% and the probability he/she will vote for the Blue party is 20% and the probability that he/she will vote for the Red party is 20%. If a citizen voted for the Red party in one election, the probability that he/she will vote for the Red party in one election, the probability that he/she will vote for the Red party is 50%, the probability that he/she will vote for the Red party is 30% and the probability that he/she will vote for the Blue party is 30% and the probability that he/she will vote for the Blue party is 30%.
 - (a) Find the transition matrix for the voting intentions of the citizens of Oz.
 - (b) If the vote distribution at the last election was Blue 50%, Green 30%, Red 20%, find the probable vote distribution at the next election.
 - (c) Find the long term steady state distribution of the votes in Oz.