
MATH 1300 ASSIGNMENT PROBLEMS (UNIT 1)

[10] 1. AOB is the diameter of a circle with centre at O and C is any other point on the circle. Denote the vector \overrightarrow{OA} by **a** and the vector \overrightarrow{OC} by **c**.

(a) Write the vectors \overrightarrow{AC} and \overrightarrow{CB} as linear combinations of the vectors \mathbf{a} and \mathbf{c} .

(b) Use vector methods to show that $\angle ACB$ is a right angle.

[10] 2. Let $\mathbf{u} = (1, -3, 2)$, $\mathbf{v} = (3, 1, -2)$ and $\mathbf{w} = (4, 0, 1)$ be three vectors in \mathbb{R}^3 . Find the following.

(a)
$$3u - 2v + 4w$$

- (b) **u•w**
- (c) $\mathbf{v} \times \mathbf{w}$
- (d) proj_vu

(e) cosine of the angle between the vectors ${\bf u}$ and ${\bf v}$.

[10] 3. Let A = (-1, 2, 3) and B = (1, 4, -3) be two points in \mathbb{R}^3 .

- (a) Find the components of the vectors \overrightarrow{AB} and \overrightarrow{BA} .
- (b) Find the coordinates of the midpoint of the line segment AB.
- (c) The point C = (k, 9, 4) is equidistant from the points A and B. Find the value(s) of k.
- (d) If $\overrightarrow{AX} = (-1, 2, 3)$, find the coordinates of the point X.

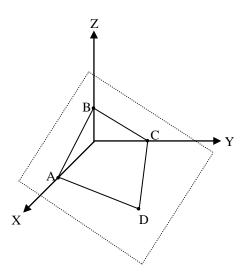
[10] 4. Let $\mathbf{u} = (4, 2, 7)$ and $\mathbf{v} = (2, 1, k)$ be two vectors in \mathbb{R}^3 .

- (a) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be parallel? Explain.
- (b) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be orthogonal? Explain.

(c) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be of equal length?

[10] 5. Let l: 2x+5y=9 be a line and P=(3, 6) be a point in \mathbb{R}^2 .

(a) Let Q be the point on the line l having its y-coordinate = 0 and let R be the point on the line l having its x-coordinate = 0. Find the coordinates of the points Q and R.


(b) Plot the points P, Q, R and the line l on a two-dimensional Cartesian coordinate system.

(c) Find the components of the vector \overrightarrow{QP} .

(d) Find a normal vector \mathbf{n} to the given line l.

(e) Find the distance between the point P and the line l.

[10] 6. The four points A(5,0,0), B(0,0,2), C(0,4,0) and D(5,6,-3) form a quadrilateral lying on the plane 4x+5y+10z=20. Find the area of this quadrilateral.

