MATH 1310 Matrices for Management and Social Sciences Assignment 5

- [4] 1. A line passes through the point P (5, 1, 2) and is parallel to the line passing through the points Q (4, 1, 7) and R (3, 8, 4). Find a vector equation and a set of parametric equations for this line.
- [6] 2. Let $\mathbf{u} = (4,3,5)$, $\mathbf{v} = (5,1,4)$ and $\mathbf{w} = (7,3,2)$ be 3 vectors in \mathbb{R}^3 . Find the following.
 - (a) $2\mathbf{u} 3\mathbf{v} + \mathbf{w}$ (b) A vector \mathbf{s} such that $2\mathbf{u} + \mathbf{s} = \mathbf{v} - \mathbf{w}$ (c) $|\mathbf{u} - \mathbf{v}|$

[10] 3. Let $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$. Which of the following vectors belongs to the null space of A? $\mathbf{u}_1 = (1, 2, 3), \ \mathbf{u}_2 = (3, 1, 2), \ \mathbf{u}_3 = (0, 0, 0), \ \mathbf{u}_4 = (0, 0), \ \mathbf{u}_5 = (6, 2, 4)$

[5] 4. Find the null space of the given matrix. If the null space is more than the zero vector alone, describe it as the span of a set of vectors.

A =	1	1	1	1	
	1	2	1 2 3	2	
	2	3	2	3	
	3	5	3	5_	

[12] 5. Determine whether or not the set *W* is a subspace of the given vector space *V*.

- (a) $W = \{(a+b, 2b) : a, b \text{ real numbers}\}; V = \mathbb{R}^2;$
- (b) $W = \{(x, x, 2x) : x \text{ real number}\}; V = \mathbb{R}^3;$
- (c) $W = \{(x, x, 1) : x \text{ real number}\}; V = \mathbb{R}^3.$
- [5] 6. Let $\mathbf{u} = (3, 4, 5)$. Find all real numbers k such that $|k\mathbf{u}| = 5$.

- [6] 7. Find the value of k for which the following vectors are linearly dependent. $\mathbf{u}_1 = (1, 3, k+3), \quad \mathbf{u}_2 = (-2, 4, -3), \quad \mathbf{u}_3 = (3, -5, k-4).$
- [12] 8. Determine if it is possible to express the vector \mathbf{v} as a linear combination of the vectors \mathbf{u}_1 and \mathbf{u}_2 . If it is possible, write \mathbf{v} as a linear combination of \mathbf{u}_1 and \mathbf{u}_2 .

(a) $\mathbf{u}_1 = (-3, 6, 3), \quad \mathbf{u}_2 = (6, -11, 7), \quad \mathbf{v} = (3, -4, 5)$

(b) $\mathbf{u}_1 = (-3, 6, 3), \ \mathbf{u}_2 = (6, -11, 7), \ \mathbf{v} = (3, 3, 2)$

(c) Using the information from parts (a) and (b) above, find a basis for \mathbb{R}^3 that contains both of the vectors \mathbf{u}_1 and \mathbf{u}_2 .