MATH 1500 Assignment 4

(Follows Unit 11 in the manual)

Values

[12] 1. Find the critical numbers of each of the following functions. [cf. Section 4.1]

(a) $f(x) = x^4 - 2x^2$ (b) $f(x) = xe^{2x}$ (c) $f(x) = 3x^{1/3} - x$

- 2. Find the absolute maximum and absolute minimum values of f(x) on the [12] given interval. [cf. Section 4.1]

- (a) $f(x) = 6x^2 x^3$ [-3, 5] (b) $f(x) = 3x^{1/3} x$ [-2, 2]
- 3. Verify that the function $f(x) = x^3 + 3x$ satisfies the hypotheses of the Mean [8] Value Theorem on the interval [0, 2].. Find all numbers c that satisfy the conclusion of the Mean Value Theorem. [cf. Section 4.2]
- 4. Determine the interval(s) where f(x) is increasing or decreasing. Find also the [12] local maximum and local minimum values of f(x).

(a) $f(x) = \frac{x}{(1+x)^2}$ (b) $f(x) = x^3 - 3x^2 + 5$

- 5. Determine where $f(x) = x^4 4x^3$ is concave up and where it is concave down. [10] Find all the inflection points of $f(x) = x^4 - 4x^3$. [cf. Section 4.3]
- 6. If $f(x) = \frac{x^2 1}{x^2 4}$, then $f'(x) = \frac{-6x}{(x^2 4)^2}$ and $f''(x) = 6 \left[\frac{3x^2 + 4}{(x^2 4)^3} \right]$. [16]
 - (a) Determine the intervals where f(x) is increasing and where it is decreasing.
 - (b) Find all local maxima and all local minima.
 - (c) Determine where f(x) is concave up and where it is concave down.
 - (d) Find all inflection points.
 - (e) Find all horizontal asymptotes and all vertical asymptotes.
 - (f) Sketch the graph of f(x).

[cf. Section 4.5]