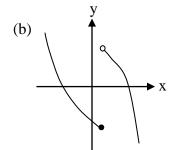
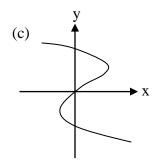

Assignment 1

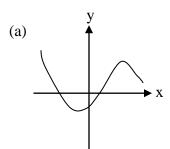

MATH 1500

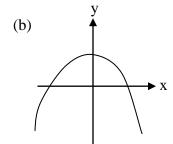

(Follows Unit 4 in the manual)

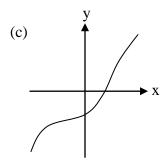
Values

[6] 1. Determine which of the following graphs is the graph of a function of the type y = f(x). Give reasons for your answers.

[9] 2. For each of the following functions, find the domain and the range.


(a)
$$f(x) = \sqrt{8 - 2x}$$


(b)
$$f(x) = \frac{1}{x-1}$$


(a)
$$f(x) = \sqrt{8-2x}$$
 (b) $f(x) = \frac{1}{x-1}$ (c) $f(x) = \frac{1}{1-\sqrt{x-2}}$

- 3. Given $f(x) = \frac{1}{1-x}$ and $g(x) = \sqrt{x-1}$, find the composite functions [6] $f\circ g$ and $g\circ f$. Find also the domains of $f\circ g$ and $g\circ f$.
- 4. Consider the function $f(x) = \frac{1-2x}{1+x}$. [8]
 - (a) Find the inverse function $f^{-1}(x)$.
 - (b) Find the domain of $f^{-1}(x)$.
 - (c) Show that the function is one to one.

5. Each of the following graphs is the graph of a function of the type y = f(x). [6] For which of these functions does an inverse function $y = f^{-1}(x)$ exist? Give reasons for your answers.

[9] 6. Determine whether each of the following functions is even or odd.

(a)
$$f(x) = x^5 - x$$

(b)
$$f(x) = e^{-x^2}$$

(c)
$$f(x) = x^2 + x$$

[20] 7. Evaluate each of the following limits or explain why it does not exist.

(a)
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x^2 - 9}$$
 (b) $\lim_{x \to 0} \frac{\sqrt{4 + x} - 2}{x}$ (c) $\lim_{x \to 2} \frac{x^4 - 16}{x^3 - 8}$ (d) $\lim_{x \to 0} \sqrt{x^3 - x}$

(b)
$$\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$$

(c)
$$\lim_{x \to 2} \frac{x^4 - 16}{x^3 - 8}$$

(d)
$$\lim_{x \to 0} \sqrt{x^3 - x}$$

8. If $2-x^2 \le g(x) \le 2\cos x$ for all x, find $\lim_{x\to 0} g(x)$ [6]

Total = 70