UNIVERSITY OF MANITOBA

MATH 1700 D01

Assignment 5

This assignment is based on units 9 and 10.

1.

- (a) Sketch the curve x = 1 + 3t, $y = 2 t^2$ by using the parametric equations to plot the points. Indicate with an arrow the direction in which the curve is traced as t increases.
- (b) Eliminate the parameter to find a Cartesian equation of the curve.

2.

Let
$$x = t^3 - 12t$$
, $y = t^2 - 1$.

- (a) Find dy/dx and d^2y/dx^2 .
- (b) For which values of t is the curve concave upward?
- 3.

Find the exact length of the curve $x = e^t + e^{-t}$, y = 5 - 2t, $0 \le t \le 3$.

4.

Find the exact area of the surface obtained by rotating the curve $x=3t-t^3, y=3t^2, 0 \le t \le 1$ about the x-axis.

5.

Sketch the curve with the polar equation $r = -3\cos\theta$.

6.

Find the slope of the tangent line to the polar curve $r=2-\sin\theta$, at the point $\theta=\pi/3$.

7.

Find the area of the region that lies inside $r = 3 \sin \theta$ and outside $r = 2 - \sin \theta$.

8.

Find the exact length of the polar curve $r = e^{2\theta}$, with $0 \le \theta \le 2\pi$.