UNIVERSITY OF MANITOBA

MATH 1700 D01

Assignment 4

This assignment is based on units 7 and 8.

1.

Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

(a)
$$\int_0^\infty \frac{x \, dx}{(1+2x^2)^{3/2}}$$

(b)
$$\int_0^1 \frac{1}{(1-x)^{1/3}} \, dx$$

(c)
$$\int_{e}^{\infty} \frac{dx}{x \ln x}$$

2

Find the length of the curve.

(a)
$$y = \frac{x^3}{12} + \frac{1}{x}$$
, $1 \le x \le 4$

(b)
$$y^2 = (x-1)^3$$
, from $P(1,0)$ to $Q(2,1)$

3.

Find the area of the surface obtained by rotating the curve about the x-axis.

(a)
$$y = \frac{x^3}{12} + \frac{1}{x}$$
, $1 \le x \le 4$

(b)
$$4x = y^2$$
, from $A(0,0)$ to $B(1,2)$

4

The curve $y = x^{3/2}$ with $0 \le x \le 1$ is rotated about the y-axis. Find the area of the resulting surface.