
MATH 1300 ASSIGNMENT PROBLEMS (UNIT 1)

[10] ABCD is a rhombus (a parallelogram with all four sides of equal length).

(a) Write the vector \overrightarrow{BD} as a linear combination of the vectors \overrightarrow{AB} and \overrightarrow{BC} .

(b) Write the vector \overrightarrow{AC} as a linear combination of the vectors \overrightarrow{AB} and \overrightarrow{BC} .

(c) Use vector methods to show that \overrightarrow{AC} is perpendicular to \overrightarrow{BD} .

[10] 2. Let A = (5, 7, -4) and B = (3, -5, 1) be two points in \mathbb{R}^3 .

(a) Find the components of the vectors \overrightarrow{AB} and \overrightarrow{BA} .

(b) Find the coordinates of the point C if $\overrightarrow{AC} = \overrightarrow{CB}$.

(c) The point D = (k, 2, 3) is equidistant from the points A and B. Find the value(s) of k.

(d) Find the coordinates of the point X for which $\overrightarrow{AX} = 2\overrightarrow{AB}$.

[10] 3. Let $\mathbf{u} = (4,3,1)$, $\mathbf{v} = (5,4,-2)$ and $\mathbf{w} = (7,-3,4)$ be three vectors in \mathbf{R}^3 . Find the following.

(a) 2u - 3v + w

(b) $\mathbf{u} \cdot \mathbf{v}$

(c) $\mathbf{v} \times \mathbf{u}$

(d) $proj_v \mathbf{u}$

(e) sine of the angle between the vectors ${\bf u}$ and ${\bf v}$.

[10] 4. Let $\mathbf{u} = (4, 6, 3)$ and $\mathbf{v} = (2, 3, k)$ be two vectors in \mathbf{R}^3 .

(a) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be parallel? Explain.

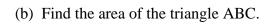
(b) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be orthogonal? Explain.

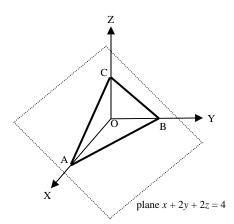
(c) For what value(s) of k will the two vectors \mathbf{u} and \mathbf{v} be of equal length?

[10] 5. Let l: 2x + 3y = 6 be a line and P = (5, 3) be a point in \mathbb{R}^2 .

(a) Let Q be the point on the line l having its y-coordinate = 0 and let R be the point on the line l having its x-coordinate = 0. Find the coordinates of the points Q and R.

(b) Plot the points P, Q, R and the line l on a two-dimensional Cartesian coordinate system.


(c) Find the components of the vector \overrightarrow{QP} .


(d) Find a normal vector \mathbf{n} to the given line l.

(e) Find the distance between the point P and the line l.

[10] 6. The plane x + 2y + 2z = 4 intersects the positive coordinate axis OX, OY and OZ in three points A, B and C respectively.

(a) Find the coordinates of the three points A, B and C.

