MATH 1300 ASSIGNMENT PROBLEMS (UNIT 3)

[10] 1. Determine into which of the following 3 types (A), (B) or (C) the matrices (a) to (e) below can be classified.

Type (A): The matrix is in both reduced row-echelon form and row-echelon form.

Type (B): The matrix is in row-echelon form but not in reduced row-echelon form.

Type (C): The matrix is in neither reduced row-echelon form nor in row-echelon form.

	1	2	0	0		1	0	3	1	[1	2	0	0		0	0	0	1		1	0	1	0	
(a)	0	3	4	5	(h)	0	0	2	0	0	0	1	0	(b)	0	0	1	1	(a)	0	1	0	0	
(a)	0	1	1	3	(0)	0	0	0	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (c)	0	0	0	1	(u)	0	1	1	1	(e)	0	0	0	1	I
	0	0	0	1		0	0	0	0	0	0	0	0		_1	1	1	1		0	0	0	0	

(f) Find all 2×3 reduced row-echelon matrices having a bottom row containing only zeros.

[10] 2. Consider the following system of linear equations.

$$x_{1} + x_{3} + x_{4} = 2$$

$$x_{1} + x_{2} - x_{3} = 6$$

$$x_{2} + x_{3} + x_{4} = 3$$

$$x_{1} - x_{2} + x_{4} = 0$$

(a) Write out the augmented matrix for this system of linear equations.

(b) Use elementary row operations to reduce the augmented matrix to reduced row-echelon form.

- (c) Write out the solution to the system of linear equations.
- [10] 3. The augmented matrix from a system of linear equations has the following reduced row-echelon form.

[1	-3	0	2	0	-1	0	7]
0	0	1	-2	0	-1 4 -2 0 0	0	5
0	0	0	0	1	-2	0	6
0	0	0	0	0	0	1	8
0	0	0	0	0	0	0	0

- (a) How many equations are there in the system?
- (b) How many variables are there in the system?
- (c) How many of the variables are independent variables?
- (d) Write out the solution set for the system.
- [10] 4. Consider the system of linear equations

x + ay = 12x + 8y = b where *a* and *b* are real numbers.

- (a) Write out the augmented matrix for this system of linear equations.
- (b) Use elementary row operations to reduce the augmented matrix to row-echelon form.
- (c) Determine for what values of a and b does the system have infinitely many solutions.
- (d) Determine for what values of a and b does the system have no solution.
- (e) Determine for what values of a and b does the system have an unique solution.
- [10] 5. Anne, Betty and Carol went to their local produce store to buy some fruit. Anne bought one pound of apples and two pounds of bananas and paid \$2.11. Betty bought two pounds of apples and one pound of grapes and paid \$4.06. Carol bought one pound of bananas and two pounds of grapes and paid \$4.45.

(a) Let x = price of a pound of apples, y = price of a pound of bananas and z = price of a pound of grapes. Write out 3 linear equations representing the purchases of Anne, Betty and Carol.

(b) Write out the augmented matrix for your system of 3 linear equations of part (a).

(c) Use elementary row operations to row reduce the augmented matrix of part (b) to a reduced row-echelon matrix.

- (d) What is the price per pound for each of the three fruits?
- [10] 6. Consider the linear equation ax + by + cz = d $(d \neq 0)$ (1) and the associated homogeneous equation ax + by + cz = 0. (2)

Let (x_1, y_1, z_1) be a solution to equation (1) and

let (x_0, y_0, z_0) be a solution to equation (2).

(a) Let *k* be any real number different from 1. Show that (kx_1, ky_1, kz_1) is a not a solution to equation (1).

b) Let k be any real number. Show that (kx_0, ky_0, kz_0) is a solution to equation (2).

(c) Let k be any real number. Show that $(x_1 + kx_0, y_1 + ky_0, z_1 + kz_0)$ is a solution to equation (1).