MATH 1300 ASSIGNMENT PROBLEMS (UNIT 4)

[10] 1. Let $A = \begin{bmatrix} 5 & 2 & 4 \\ 2 & -3 & 5 \\ -3 & 2 & 1 \end{bmatrix}$ and let $B = \begin{bmatrix} 3 & 2 & -4 \\ 5 & -1 & 3 \\ 2 & 4 & 0 \end{bmatrix}$. Find the following.

- (a) $2A + B^{T}$.
- (b) AB
- (c) BA
- (d) The matrix C for which $A C^{T} = 2B$.
- [10] 2.(a) Which of the following matrices are elementary matrices?

	[1	0	0		[3	0	0	0	1	0
(i)	0	0 1	0	(ii)	0	3	0	0	0	1
	3	0	1_							

(b) Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 4 \\ 3 & 1 & 2 \end{bmatrix}$. Find an elementary matrix E such that EA = B if (i) $B = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 4 \\ 5 & 7 & 6 \end{bmatrix}$ (ii) $B = \begin{bmatrix} 2 & 5 & 4 \\ 1 & 3 & 2 \\ 3 & 1 & 2 \end{bmatrix}$ (iii) $B = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 4 \\ 6 & 2 & 4 \end{bmatrix}$

(c) Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}$. Find two elementary matrices E_1 and E_2 such that $E_2 E_1 A = I$.

[10] 3. Find the inverse of
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 3 & 3 \\ 3 & 4 & 5 & 5 \\ 4 & 5 & 6 & 7 \end{bmatrix}$$
. Show all your work and verify that your answer

is correct.

[10] 4. Consider the following system of linear equations

$$x_{1} + x_{2} + x_{3} + x_{4} = 3$$

$$2x_{1} + 3x_{2} + 3x_{3} + 3x_{4} = 4$$

$$3x_{1} + 4x_{2} + 5x_{3} + 5x_{4} = 1$$

$$4x_{1} + 5x_{2} + 6x_{3} + 7x_{4} = 2$$

- (a) Rewrite this system of linear equations as a single matrix equation in the form $A\mathbf{x} = \mathbf{b}$.
- (b) Use the matrix A^{-1} to find the solution **x**. [Hint: See problem 3 for A^{-1} .]
- [10] 5. Provide examples to illustrate the following.
 - (a) A 3×3 non zero matrix B such that $B^2 = O$.
 - (b) A 3×3 matrix C such that $C^2 = C$ with $C \neq I$ and $C \neq O$.
 - (c) A 3×3 matrix D such that $D^T = D$ with $D \neq I$ and $D \neq O$.
 - (d) A 3×3 matrix F such that $F^{T} = -F$ with $F \neq O$.
- [10] 6. The citizens of Oz have a choice of 3 political parties in their municipal elections, the Blue party, the Green party or the Red party. A study of past voting patterns shows that if a citizen voted for the Blue party in one election, the probability that he/she will vote for the Blue party in the next election is 80%, the probability he/she will vote for the Green party is 10% and the probability he/she will vote for the Red party is 10%. If a citizen voted for the Green party in one election, the probability that he/she will vote for Green party in the next election is 70%, the probability he/she will vote for the Blue party is 20% and the probability that he/she will vote for the Red party is 20% and the probability that he/she will vote for the Red party in one election, the probability that he/she will vote for the Red party in the next election is 60%, the probability that he/she will vote for the Blue party in the next election is 60%.
 - (a) Find the transition matrix for the voting intentions of the citizens of Oz.

(b) If the vote distribution at the last election was Blue 40%, Green 35%, Red 25%, find the probable vote distribution at the next election.

(c) Find the long term steady state distribution of the votes in Oz.