## **Assignment 3**

## **MATH 1500**

## (Follows Unit 9 in the manual)

## **Values**

[16] 1. Use the differentiation rules (not the definition of the derivative) to calculate the derivatives of the following functions. Do not simplify.

(a) 
$$f(x) = (5x^3 + 3x^2)^{1/4}$$

(b) 
$$f(x) = (e^{-2x} + 4\cos 3x)^3$$
 (c)

$$f(x) = \sqrt{\tan^2 x - \sqrt{4x}}$$

(a) 
$$f(x) = (5x^3 + 3x^2)^{1/4}$$
 (b)  $f(x) = (e^{-2x} + 4\cos 3x)^3$  (c)  $f(x) = \sqrt{\tan^2 x - \sqrt{4x}}$  (d)  $f(x) = (\tan x \sin x)(e^{3x^2} + x^{3/2})^3$ 

[10] 2. Use implicit differentiation to find  $\frac{dy}{dx}$  in terms of x and y

(a) 
$$x^2y^2 + 2xy = 3x$$

(a) 
$$x^2y^2 + 2xy = 3x$$
 (b)  $2y^3 + x\sin y + 2x^2y = y$ 

- 3. Find an equation of the tangent line to the curve  $2x^3 3y^3 + x^2y = 4$  at the [6] point (1, -1).
- 4. Find the third order derivative f'''(x) of  $f(x) = 2x^4 + 3x \cos^2 x$ . [10]
- [12] 5. Differentiate the following functions. (Do not simplify)

(a) 
$$f(x) = \ln(\tan x - \sin 2x)$$

(a) 
$$f(x) = \ln(\tan x - \sin 2x)$$
 (b)  $f(x) = (2x^2 - 3)\ln(x^2 + 5x)$ 

(c) 
$$f(x) = x^{\tan x}$$

6. The curve  $y = \ln x$  has one tangent line that [8] passes through the point (0, 1). Find the equation of this tangent line.



[8] 7. Two people start from the same point. One walks east at 4 km/hr while the other walks north at 3 km/hr. How fast is the distance between the people changing after 1/2 hour?



Total = 70