MATH 1500 Assignment 4

(Follows Unit 11 in the manual)

Values

[9] 1. Find the critical numbers of each of the following functions. [cf. Section 4.1]

(a)
$$f(x) = x^5 - 5x^3$$

(b)
$$f(x) = x^2 e^{2x}$$

(a)
$$f(x) = x^5 - 5x^3$$
 (b) $f(x) = x^2 e^{2x}$ (c) $f(x) = 12x^{1/3} - x$

2. Find the absolute maximum and absolute minimum values of f(x) on the [10] given interval. [cf. Section 4.1]

(a)
$$f(x) = 2x^3 - 15x^2$$
 [-2, 10]

(b)
$$f(x) = 9x^{1/3} - 3x$$
 [-2, 2]

- 3. Verify that the function $f(x) = 5x^3 + 3x$ satisfies the hypotheses of the Mean [8] Value Theorem on the interval [0, 2].. Find all numbers c that satisfy the conclusion of the Mean Value Theorem. [cf. Section 4.2]
- 4. Use the Mean Value Theorem to show that $\cos x \ge 1 x$ if $x \ge 0$. [6]
- 5. If the Mean Value Theorem is applied to the function $f(x) = \frac{5}{2}x^{2/5}$ on the [3] closed interval [-1, 1] we conclude that there is a number c in the open interval (-1, 1) such that $f'(c) = \frac{\frac{5}{2} - \frac{5}{2}}{2} = 0$. However $f'(x) = \frac{1}{x^{3/5}}$ is obviously never zero for any number c in the open interval (-1, 1). Explain the contradiction.
- 6. Determine the interval(s) where f(x) is increasing or decreasing. Find also the [10] local maximum and local minimum values of f(x). [cf. Section 4.3]

(a)
$$f(x) = x^5 - 15x^3 + 3$$
 (b) $f(x) = 3x^{4/3} - 96x^{1/3}$

(b)
$$f(x) = 3x^{4/3} - 96x^{1/3}$$

7. Determine where $f(x) = x^4 - 6x^3 + 1$ is concave up and where it is concave [8] down. Find all the inflection points of $f(x) = x^4 - 6x^3 + 1$. [cf. Section 4.3]

[16] 8. If
$$f(x) = \frac{4x-4}{x^2}$$
, then $f'(x) = 4\left[\frac{2-x}{x^3}\right]$ and $f''(x) = 8\left[\frac{x-3}{x^4}\right]$.

- (a) Determine the intervals where f(x) is increasing and where it is decreasing.
- (b) Find all local maxima and all local minima.
- (c) Determine where f(x) is concave up and where it is concave down.
- (d) Find all inflection points.
- (e) Find all horizontal asymptotes and all vertical asymptotes.
- (f) Sketch the graph of f(x).

[cf. Section 4.5]

Total = 70