MATH 1700 D01 Winter 2013 Assignment 2

SHOW ALL WORK to get full marks. Leave answers as exact answers. For example, leave it as e^2 as opposed to a decimal approximation.

- 1. Find the following indefinite integrals
 - (a)

 $\int \left(\frac{y^4 + 3y + 5\sqrt[3]{y}}{y^2}\right) dy$

(b)

 $\int (10 - 3t)^{2013} dt$

(c)

- $\int \sin u \sin(\cos u) du$
- 2. Find the following definite integrals
 - (a)

 $\int_0^{\ln 4} \frac{e^x}{(e^x+1)^3} dx$

(b)

 $\int_{1}^{\sqrt{3}} \frac{\tan^{-1} x}{1+x^2} dx$

(c)

 $\int_{a}^{e^3} \frac{1}{t \ln^3 t} dt$

(d)

- $\int_{-5}^{5} \frac{(4u^3 + u)\cos u}{u^6 + u^2 + 1}$
- 3. Find the following integral by interpretting it in terms of areas

$$\int_{-2}^{2} (3 + \sqrt{4 - x^2}) dx$$

4. Draw a sketch of the region R and then find the area of R where R is the region bounded by the curves $y=x^2$, $y=x^2$ and 2x+y=8 where $x\geq 0$.

1

- 5. Draw a sketch of the region R and then find the volume of revolution of R where R is the region bounded by $y = 6x x^2$, y = 5 rotated about
 - (a) the x-axis.
 - (b) the vertical line x = 5.
- 6. A cup of coffee has temperature 75^o and takes an hour to cool to approximately 28.3^o in a room of temperature of temperature 20^o . It can be shown that the temperature follows the function

$$T(t) = 20 + 50e^{-kt}$$

where k = 0.03 and t is in minutes. Find the average temperature of the coffee over the first hour.