MATH 1700 D01 Winter 2013 Assignment 5

SHOW ALL WORK to get full marks. Leave answers as exact answers. For example, leave it as e^2 as opposed to a decimal approximation.

1. Find the arc length of the curve

$$y = \frac{x^3}{6} + \frac{1}{2x}, \quad 1 \le x \le 3.$$

2. Find the area obtained by rotating the curve g(x) defined by

$$g(x) = \int_{1}^{x} \sqrt{t^3 - 1} dt, \quad 1 \le x \le 4$$

about the *y*-axis.

- 3. Find the area obtained by rotating the curve $y = 4 x^2$, from $0 \le x \le 1$ about the *y*-axis.
- 4. For the parametric curve $x = \ln t t, y = \ln t + t$
 - (a) Find dy/dx
 - (b) Find the equation of the tangent line to the curve at the point (-1, 1).
 - (c) Find the point(s) on the curve where the tangent line to the curve at that point is horizontal.
 - (d) Find the point(s) on the curve where the tangent line to the curve at that point is vertical.
- 5. For the parametric curve in the previous question , find the length of the curve from t = 1 to $t = \sqrt{3}$.
- 6. For the curve $x = 5t t^3$, $y = \sqrt{15}t^2$
 - (a) Show the curve crosses itself at the point $(0, 5\sqrt{15})$. (Hint: Find two different values of t which give the same point and show that the tangent lines at those values are different)
 - (b) Find the length of the loop in the parametric curve (a sketch would be helpful, but is not required for marks)